What is Localization

- A mechanism for discovering spatial relationships between objects
Why is Localization Important?

- Large scale embedded systems introduce many fascinating and difficult problems...
 - This makes them much more difficult to use...
 - **BUT** it couples them to the physical world
- Localization measures that coupling, giving raw sensor readings a physical context
 - Temperature readings ⇒ temperature map
 - Asset tagging ⇒ asset tracking
 - “Smart spaces” ⇒ context dependent behavior
 - Sensor time series ⇒ coherent beamforming
Variety of Applications

- Two applications:
 - Passive habitat monitoring: Where is the bird? What kind of bird is it?
 - Asset tracking: Where is the projector? Why is it leaving the room?
Variety of Application Requirements

- Very different requirements!

 - Outdoor operation
 - Weather problems
 - Bird is not tagged
 - Birdcall is characteristic but not exactly known
 - Accurate enough to photograph bird
 - Infrastructure:
 - Several acoustic sensors, with known relative locations; coordination with imaging systems

 - Indoor operation
 - Multipath problems
 - Projector is tagged
 - Signals from projector tag can be engineered
 - Accurate enough to track through building
 - Infrastructure:
 - Room-granularity tag identification and localization; coordination with security infrastructure
Multidimensional Requirement Space

- Granularity & Scale
- Accuracy & Precision
- Relative vs. Absolute Positioning
- Dynamic vs. Static (Mobile vs. Fixed)
- Cost & Form Factor
- Infrastructure & Installation Cost
- Communications Requirements
- Environmental Sensitivity
- Cooperative or Passive Target
Axes of Application Requirements

- **Granularity and scale of measurements:**
 - What is the smallest and largest measurable distance?
 - e.g. cm/50m (acoustics) vs. m/25000km (GPS)

- **Accuracy and precision:**
 - How close is the answer to “ground truth” (accuracy)?
 - How consistent are the answers (precision)?

- **Relation to established coordinate system:**
 - GPS? Campus map? Building map?

- **Dynamics:**
 - Refresh rate? Motion estimation?
Axes of Application Requirements

- **Cost:**
 - Node cost: Power? $? Time?
 - Infrastructure cost? Installation cost?

- **Form factor:**
 - Baseline of sensor array

- **Communications Requirements:**
 - Network topology: cluster head vs. local determination
 - What kind of coordination among nodes?

- **Environment:**
 - Indoor? Outdoor? On Mars?

- Is the target known? Is it cooperating?
Returning to our two Applications...

- Choice of mechanisms differs:
 - Passive habitat monitoring: Minimize environ. interference. No two birds are alike.
 - Asset tracking: Controlled environment. We know exactly what tag is like.
Taxonomy of Localization Mechanisms

- **Active Localization**
 - System sends signals to localize target
- **Cooperative Localization**
 - The target cooperates with the system
- **Passive Localization**
 - System deduces location from observation of signals that are “already present”
- **Blind Localization**
 - System deduces location of target without *a priori* knowledge of its characteristics
Self-Localization in Wireless Sensor Networks

• Active and Cooperative Localization
• Basic Problem Statement (2D):
 • Estimate unknown locations of \(n \) nodes \(\theta = [\theta_x, \theta_y] \)
 \(\theta_x = [x_1, \ldots, x_n], \theta_y = [y_1, \ldots, y_n] \)
 • Given the \(m \) known reference locations \([x_{n+1}, \ldots, x_{n+m}, y_{n+1}, \ldots, y_{n+m}] \); and
 • Pair-wise measurements \(\{X_{i,j}\} \) between nodes: \(X_{i,j} \) is the measurement between nodes \(i \) and \(j \); \(X_{i,j} \) is only available for a subset of pairs \((i, j) \)
Measurements for Self-Localization

- Measurements are noisy and contain errors
 - Physical medium introduces both time-varying and static errors
 - Errors are environment dependent (building, tree, etc.)
 - Knowledge on the statistical characterization of measurement errors is critical to accurate self-localization

- Types of measurements
 - Received Signal Strength (RSS)
 - Time of Arrival (TOA)
 - Angle of Arrival (AOA)
Properties of RSS Measurements

- RSS can be measured by a receiver’s received signal strength indicator (RSSI) circuit.
- Based on the appropriate signal propagation model (power decays proportional to d^{-2} in free space), the range (distance) between the sender and receiver can be estimated.
- RSSI measurements of RF signals are readily available during communications.
- Issues with RSS measurements:
 - Multipath: frequency selective fading
 - Shadowing: function of the environment
 - Variations in transmit power and RSSI circuits from device to device; transmit power can change as batteries deplete.
 - treat the power as an unknown or consider the difference between RSS measurements at different sensors.

\[
\bar{P}(d) = P_0 - 10n_p \log \frac{d}{d_0}
\]

(dBm) \hspace{2cm} \text{path loss exponent} \hspace{2cm} \text{constant} \Rightarrow \text{multiplicative range error}

\[
f(P_{i,j} = p|\theta) = \mathcal{N}\left(p; \bar{P}(d_{i,j}), \sigma_{dB}^2\right)
\]

Spring 2006 \hspace{2cm} CS 649 \hspace{2cm} 13
Practical Difficulties with RSSI

- RSSI is extremely problematic for fine-grained, ad-hoc applications
 - Path loss characteristics depend on environment \((1/r^n)\)
 - Shadowing depends on environment
 - Short-scale fading due to multipath adds random high frequency component with huge amplitude (30-60dB) – very bad indoors
 - Mobile nodes might average out fading. But static nodes can be stuck in a deep fade forever
- Potential applications
 - Approximate localization of mobile nodes, proximity determination
 - “Database” techniques (RADAR)

Properties of the TOA Measurements

- Using measured propagation delay and the known signal propagation velocity to estimate the range (acoustic: 1ms → 1ft; RF: 1ns → 1ft)
- Additive noise: limit the accuracy of arrival detection

\[
\text{var}(\text{TOA}) \geq \frac{1}{8\pi^2 B T_s F_c^2 \text{SNR}}
\]

- Multipath:
 - Attenuated LOS: sever in sparse network (larger distances)
 - Early-arriving multipath
 - Wider bandwidths necessary (narrow autocorrelation peak) for greater temporal resolution
 - Wider bandwidths (DS-SS, UWB) imply faster signal processing, higher device costs, and possibly higher energy costs

\[
f (T_{i,j} = t|\theta) = \mathcal{N} \left(t; d_{i,j}/v_p + \mu_T, \sigma_T^2 \right)
\]
TOA : Issue with Clock Synchronization between the Sender and the Receiver

- Direct implementation of TOA requires clock synchronization between the sender and the receiver (accuracy of existing algorithms ~10µs inadequate for RF)
- Generic approaches to combat synchronization issue
 - Two-way (round-trip) TOA measurements
 - Estimate the unknown clock bias as an additional parameter
 - Time Difference of Arrivals (TDOA) of multiple (and typically multimodal) signals

- Radio channel is used to synchronize the sender and receiver
- Coded acoustic signal is emitted at the sender and detected at the emitter. TOF determined by comparing arrival of RF and acoustic signals
AOA Measurements

• Estimate the angle of arrival of the signal through
 • Array signal processing at a node
 • RSS ratio among multiple directional antennas at a node
• Require multiple antenna elements that can contribute to higher cost and larger device size
 • However, advances in VLSI technology will make the AOA approach more feasible and affordable
• Major sources of error
 • Additive noise
 • Multipath
 • Sensor orientation
Qualitative Comparison among RSS, TOA, and AOA from Statistical Models

• TOA is less sensitive to increases in distances among sensors hence more appropriate for low-density networks
• In general TOA and AOA can achieve higher accuracy than RSS, however with higher device costs
 • Typically AOA > TOA > RSS in terms of device costs
• RSS is attractive for low-cost deployments of denser networks with lower accuracy requirement
RF versus Acoustic Signals

• RF signal
 • Pros
 • Lower costs, readily available in sensor networks
 • Does not require LOS
 • Cons
 • Accurate, deterministic transponders hard to build
 • TOA measurements require fast, synchronized clocks to achieve high precision

• Acoustic signal
 • Pros
 • Slower propagation, can achieve higher accuracy with LOS
 • Lower path loss than RF near the ground, because ground reflections in acoustics don’t cancel
 • Audible acoustics have very wide range of wavelengths
 • Cons
 • Poor penetration ⇒ detector picks up reflections in Non-LOS
 • Audible sound: good channel properties, but often inappropriate
The Cricket Location-Support System

N. Priyantha, A. Chakraborty, H. Balakrishnan
MOBICOM 2000
Goal

- User Privacy
- Decentralized administration
- Network heterogeneity
- Low cost
- Room-sized granularity
System Architecture

- **Beacon:**
 - Disseminate the string of space information about a geographic space to listeners.
- **Listener:** Infer its current location from the set of beacons (by determine the closest beacon).

Approach

Use combination of RF and ultrasound to provide a location-support service to users.
Cricket Operation

\[v_{RF}, v_s \] are known:

\[v_{RF} \Delta t_{RF} = v_s \Delta t_s \implies t_0 = \frac{v_{RF} t_1 - v_s t_2}{v_{RF} - v_s} \]

• Can then calculate distance \(s \) from beacon as:

\[s = v_s \Delta t_s = v_s (t_2 - t_0) \]
Complications

- RF signals from multiple beacons may collide
 - Randomization
- Wrong correlation of the RF data of one beacon with the ultrasonic signal of another
 - System Parameters
 - Listener Inference Algorithms

![Diagram showing RF and ultrasonic signals from two beacons with incorrect distance indication.](image)
System Parameters Selection

- Use a relatively sluggish RF data transmission rate.

S - size of space string
b - RF bit rate
r - ultrasound range
v - velocity of ultrasound

$\frac{S}{b} > \frac{r}{v}$

(RF transmission time) > (Max. RF US separation at the listener)
Interference Scenarios

- **RF-A:US-RA**
 - Align the beacons

- **RF-A:US-I**
 - Using RF signal with long range

- **RF-A:US-RI**
 - Ensure less than 5 beacons within range of each other

Figure 1: RF-A:US-I interaction, with US-A arriving after US-I. The two RF transmissions overlap in time at the listener.
Experiment:
Boundary Performance

Spring 2006

CS 649
The MoteTrack System

- Targeting emergency response applications: pre-installation and manual calibration not feasible
- Rely RF RSSI measurements from beacon nodes for localization
 - Each node build up a signature based on received beacon messages (ID, power level) and measured RSSIs
 - Node localize itself by comparing its signature with reference signatures (from offline calibration) available at the beacons
- Focus on robustness rather than high accuracy in localization