Outline

- Types of data collection in WSNs
- Directed Diffusion model
- Evaluation results
- Diffusion variants
Types of Data Collection

- Streaming
- In-Network Processing
- Triggering
- Tasking

Streaming

- Most typical method in current deployments
- Great Duck Island deployment
- Correlation, processing, and logic is largely done outside of the network
In-Network Processing

- Routing
 - Diffusion Matching
- Storage
 - Data Distribution
 - Lookup
- Aggregation
 - TinyDB
- Compression
- ESS
- Loose Model

Triggering

- Event Detection
 - Data may be routed for different reasons
 - Relevance of data is defined by distributed model
Tasking

- Network control and configuration
- Query languages
- Programming “scripts”
- Binary-reprogramming

```
if (0 == iTemp)
{
    Sense(&var1);
}
```

Directed Diffusion

- New routing model
 - Named data
 - Publish and subscribe
 - Diffusion protocols
Publish and Subscribe

- Data sources need not know anything about data sinks
- Network can scale independent of data consumption
- Data can be routed dynamically, according to its value
 - Matching

Named Data

- Data names are attributes
 - Key
 - Operation
 - Value
- Routes are known as Gradients
- Attributes (data) is matched along gradients as it flows through the network
Attributes Implementation (1)

- Each attribute implemented as a key-type-value-operator tuple
- Key
 - Indicates the semantics of the attribute
 - Latitude, frequency, etc
- Type
 - Indicates the primitive type that the key will be
 - Available types
 - INT32_TYPE // 32-bit signed integer
 - FLOAT32_TYPE // 32-bit
 - FLOAT64_TYPE // 64-bit
 - STRING_TYPE // UTF-8 format
 - BLOB_TYPE // un-interpreted binary data

Attributes Implementation (2)

- Operator
 - Describes how the attribute will match when two attributes with the same key and type are compared
 - Available operators are: IS, EQ, NE, GE, GT, LE, LT, EQ_ANY
 - IS operator specifies a known, actual value
 - Other operators specify a condition that must be satisfied

- Examples
 - LATITUDE IS 12.3
 - LONGITUDE LE 45.2
 - TEMPERATURE IS 72.7
 - CONFIDENCE GT 0.80
Matching Example (1)

Each formal must match some actual:

- type EQ detection
- $x \geq -100$
- $x \leq 200$
- $y \geq 100$
- $y \leq 400$
- confidence > 0.5

- type IS detection
- $x \equiv 10$
- $y \equiv 150$
- confidence IS 0.7

valid match

Matching Example (2)

Each formal must match some actual:

- type EQ detection
- $x \geq -100$
- $x \leq 200$
- $y \geq 100$
- $y \leq 400$
- confidence > 0.5

- type IS detection
- $x \equiv 10$
- $y \equiv 10$
- confidence IS 0.7

no match
Basic Directed Diffusion

Setting up gradients

Source

Sink

Interest = Interrogation
Gradient = Who is interested

Basic Directed Diffusion

Sending data and Reinforcing the best path

Source

Sink

→ Low rate event

⇒ Reinforcement = Increased interest
Directed Diffusion and Dynamics

Recovering from node failure

Source

Sink

→ Low rate event

→ High rate event

→ Reinforcement

Stable path

→ Low rate event

→ High rate event
Initial simulation study of diffusion

- Key metric
 - Average Dissipated Energy per event delivered
 - indicates energy efficiency and network lifetime

- Compare diffusion to
 - flooding
 - centrally computed tree (omniscient multicast)

Diffusion Simulation Details

- Simulator: ns-2
- Network Size: 50-250 Nodes
- Transmission Range: 40m
- Constant Density: 1.95x10^-3 nodes/m^2 (9.8 nodes in radius)
- MAC: Modified Contention-based MAC
- Energy Model: Mimic a realistic sensor radio [Pottie 2000]
 - 660 mW in transmission, 395 mW in reception, and 35 mw in idle
Diffusion Simulation

- Surveillance application
 - 5 sources are randomly selected within a 70m x 70m corner in the field
 - 5 sinks are randomly selected across the field
- High data rate is 2 events/sec
- Low data rate is 0.02 events/sec
- Event size: 64 bytes
- Interest size: 36 bytes
- All sources send the same location estimate for base experiments

Average Dissipated Energy (Standard 802.11 energy model)

Standard 802.11 is dominated by idle energy
Average Dissipated Energy (Sensor radio energy model)

Diffusion can outperform flooding and even omniscient multicast. **WHY?**

Impact of In-network Processing

Application-level suppression allows diffusion to reduce traffic and to surpass omniscient multicast.
Impact of Negative Reinforcement

Reducing high-rate paths in steady state is critical

Diffusion Variants

- Diffusion family of protocols includes variants optimized for specific scenarios
 - No one single protocol is optimal for all cases
- Two-Phase Pull Diffusion
 - Interests have global scope (are sent to the network)
 - Data has local scope (does not leave a node if there is no matching interest)
- PUSH Diffusion
 - Interests have local scope (do not leave the sink node)
 - Data has global scope (is flooded to the network)
 - After rendezvous at a sink node, a positive reinforcement is sent on the reverse path, establishing a reinforced path
 - Local subscriptions not possible (as interest messages do not leave sinks)
One Phase Pull

- Subscriber based system that avoids one of the two phases of flooding in two-phase pull
- Only floods interests
- No exploratory messages

Tiny Diffusion

- Directed Diffusion’s younger brother
- Implemented on Mica motes
- Special component to filter out asymmetric links