Outline

- Background in MAC protocols
 - Role and features of MAC protocols
 - Scheduled access vs. Randomized access
 - Additional WSN requirements
- Two Examples
 - S-MAC
 - BMAC
Characteristics of Sensor Network

- A special wireless ad hoc network
- Large number of nodes
- Battery powered
- Topology and density change
- Nodes for a common task
- In-network data processing
- Sensor-net applications
 - Sensor-triggered bursty traffic
 - Can often tolerate some delay
 - Speed of a moving object places a bound on network reaction time
- Scalability & Self-configuration
- Energy efficiency
- Adaptivity
- Fairness not important
- Message-level Latency
- Trade for energy

MAC and Its Classification

- Medium Access Control (MAC)
 - When and how nodes access the shared channel
- Classification of MAC protocols
 - Scheduled protocols
 - Schedule nodes onto different sub-channels
 - Examples: TDMA, FDMA, CDMA
 - Contention-based protocols
 - Nodes compete in probabilistic coordination
 - Examples: ALOHA (pure & slotted), CSMA
MAC Attributes

- Collision avoidance
 - Basic task of a MAC protocol
- Energy efficiency
- Scalability and adaptivity
 - Network size, node density and topology change
- Channel utilization
- Latency
- Throughput
- Fairness

Primary

Secondary

Energy Efficiency in MAC Design

- Energy is primary concern in sensor networks
- What causes energy waste?
 - Collisions
 - Control packet overhead
 - Overhearing unnecessary traffic
 - Long idle time
 - Bursty traffic in sensor-net apps
 - Idle listening consumes 50—100% of the power for receiving Dominant factor
Scheduled Protocols

• TDMA

 • Advantages
 • No collisions
 • Energy efficient — easily support low duty cycles
 • Disadvantages
 • Bad scalability and adaptivity
 • Difficult to accommodate node changes
 • Difficult to handle inter-cluster communication
 • Requires strict time synchronization

Scheduled Protocols

• Polling
 • A master plus one or more slaves (star topology)
 • The master node decides which slave can send by polling the corresponding slave
 • Only direct communication between the master and a slave
 • A special TDMA without pre-assigned slots
 • Examples
 • IEEE 802.11 infrastructure mode (CFP)
 • Bluetooth piconets
Scheduled Protocols

- Self-Organization — by Sohrabi and Pottie
 - Have a pool of independent channels
 - Frequency band or spreading code
 - Potential interfering links select different channels
 - Talk to neighbors in different time slots
 - Sleep in unscheduled time slots
 - Looks like TDMA, but actually FDMA or CDMA
 - Any pair of two nodes can talk at the same time
 - Low bandwidth utilization

Scheduled Protocols

- Bluetooth
 - Target for wireless personal area network (WPAN)
 - Short range, moderate bandwidth, low latency
 - IEEE 802.15.1 (MAC + PHY) is based on Bluetooth
 - Nodes are clustered into piconets
 - Each piconet has a master and up to 7 slaves – scalability problem
 - The master polls each slave for transmission
 - Frequency-hopping CDMA between clusters
 - Multiple connected piconets form a scatternet
 - Different to handle inter-cluster communications
Scheduled Protocols

- Bluetooth (Cont.)
 - How about Bluetooth radio with sensor networks?
 - Scalability is a big problem
 - Lack of multi-hop support
 - No commercial Bluetooth radio supports scatternet so far
 - Use two radios – expensive and energy inefficient
 - A node temporarily leave one piconet and joins another – high overhead and long delay

Scheduled Protocols

 - Similar to Bluetooth
 - CDMA between clusters
 - TDMA within each cluster
 - Static TDMA frame
 - Cluster head rotation
 - Node only talks to cluster head
 - Only cluster head talks to base station (long dist.)
 - The same scalability problem
Contention-Based Protocols

- Contention-based protocols
 - CSMA — Carrier Sense Multiple Access
 - Listening before transmitting
 - Not enough for multi-hop networks (collision at receiver)

 a ➔ b

 Hidden terminal: a is hidden from c’s carrier sense

- CSMA/CA (CA stands for Collision Avoidance)
 - RTS/CTS handshake before send data
 - Other nodes (e.g. node c) backoff

Contention-Based Protocols (contd.)

- MACA — Multiple Access w/ Collision Avoidance
 - Add duration field in RTS/CTS informing other node about their backoff time

- MACAW — improved over MACA
 - RTS/CTS/DATA/ACK
 - Fast error recovery at link layer

- IEEE 802.11 Distributed Coordination Function (DCF)
 - Largely based on MACAW
Contention-Based Protocols

- IEEE 802.11 DCF: ad hoc mode
 - Virtual and physical carrier sense (CS)
 - Network allocation vector (NAV), duration field
 - Binary exponential backoff
 - RTS/CTS/DATA/ACK for unicast packets
 - Broadcast packets are directly sent after CS
 - Fragmentation support
 - RTS/CTS reserve time for first (fragment + ACK)
 - First (fragment + ACK) reserve time for second...
 - Give up transmission when error happens

Contention-Based Protocols

- Tx rate control — by Woo and Culler
 - Based on a special network setup
 - A base station tries to collect data equally from all sensors in the network
 - CSMA + adaptive rate control
 - Promote fair bandwidth allocation to all sensors
 - Nodes close to the base station forward more traffic, and have less chances to send their own data
 - Helps in congestion avoidance
Scheduled vs. Contention Protocols

<table>
<thead>
<tr>
<th></th>
<th>Scheduled Protocols</th>
<th>Contention Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collisions</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>Good</td>
<td>Bad</td>
</tr>
<tr>
<td>Scalability and adaptivity</td>
<td>Bad</td>
<td>Good</td>
</tr>
<tr>
<td>Multi-hop communication</td>
<td>Difficult</td>
<td>Easy</td>
</tr>
<tr>
<td>Time synchronization</td>
<td>Strict</td>
<td>Loose or not required</td>
</tr>
</tbody>
</table>

Energy Efficiency in Contention Protocols

- Contention-based protocols need to work hard in all directions for energy savings
 - Reduce idle listening – support low duty cycle
 - Reduce control overhead
 - Reduce collisions
 - Avoid unnecessary overhearing
Energy-Efficient MAC Design

- PAMAS: Power Aware Multi-Access with Signalling — by Singh and Raghavendra
 - Improve energy efficiency from MACA
 - Avoid overhearing by putting node into sleep
 - Use separate control and data channels
 - RTS, CTS, busy tone to avoid collision
 - Probe packets to find neighbors transmission time
 - Increased hardware complexity
 - Two channels need to work simultaneously, meaning two radio systems.

Energy-Efficient MAC Design

- Piconet — by Bennett, Clarke, et al.
 - Not the same piconet in Bluetooth
 - Low duty-cycle operation — energy efficient
 - Sleep for 30s, beacon, and listen for a while
 - Sending node needs to listen for receiver’s beacon first, then
 - CSMA before sending data
 - May wait for long time before sending
Energy-Efficient MAC Design

- Power save (PS) mode in IEEE 802.11 DCF
 - Assumption: all nodes are synchronized and can hear each other (single hop)
 - Nodes in PS mode periodically listen for beacons & ATIMs (ad hoc traffic indication messages)
 - Beacon: timing and physical layer parameters
 - All nodes participate in periodic beacon generation
 - ATIM: tell nodes in PS mode to stay awake for Rx
 - ATIM follows a beacon sent/received
 - Unicast ATIM needs acknowledgement
 - Broadcast ATIM wakes up all nodes — no ACK

Energy-Efficient MAC Design

- Unicast example of PS mode in 802.11 DCF
Case Study: S-MAC

- S-MAC — by Ye, Heidemann and Estrin
- Tradeoffs
 - Latency
 - Fairness
 - Energy
- Major components in S-MAC
 - Periodic listen and sleep
 - Collision avoidance
 - Overhearing avoidance
 - Massage passing

Coordinated Sleeping

- Problem: Idle listening consumes significant energy
- Solution: Periodic listen and sleep
 - Turn off radio when sleeping
 - Reduce duty cycle to ~ 10% (120ms on/1.2s off)
- Latency
- Energy
Coordinated Sleeping

- Schedules can differ

Node 1: listen, sleep, listen, sleep

Node 2: listen, sleep, listen, sleep

- Prefer neighboring nodes have same schedule
 — easy broadcast & low control overhead

Border nodes: two schedules

Coordinated Sleeping

- Schedule Synchronization
 - New node tries to follow an existing schedule
 - Remember neighbors’ schedules
 — to know when to send to them
 - Each node broadcasts its schedule every few periods of sleeping and listening
 - Re-sync when receiving a schedule update
 - Periodic neighbor discovery
 - Keep awake in a full sync interval over long periods
Coordinated Sleeping

- Adaptive listening
 - Reduce multi-hop latency due to periodic sleep
 - Wake up for a short period of time at end of each transmission

- Reduce latency by at least half

Collision Avoidance

- S-MAC is based on contention
- Similar to IEEE 802.11 ad hoc mode (DCF)
 - Physical and virtual carrier sense
 - Randomized backoff time
 - RTS/CTS for hidden terminal problem
 - RTS/CTS/DATA/ACK sequence
Overhearing Avoidance

- Problem: Receive packets destined to others
- Solution: Sleep when neighbors talk
 - Basic idea from PAMAS (Singh, Raghavendra 1998)
 - But we only use in-channel signaling
- Who should sleep?
 - All immediate neighbors of sender and receiver
- How long to sleep?
 - The duration field in each packet informs other nodes the sleep interval

Message Passing

- Problem: Sensor net in-network processing requires *entire* message
- Solution: Don’t interleave different messages
 - Long message is fragmented & sent in burst
 - RTS/CTS reserve medium for entire message
 - Fragment-level error recovery — ACK
 — extend Tx time and re-transmit immediately
- Other nodes sleep for whole message time

Fairness 😞 ➡️ Energy 😊 Msg-level latency
Implementation on Testbed Nodes

- Platform
 - Mica Motes (UC Berkeley)
 - 20Kbps radio at 433MHz
- Configurable S-MAC options
 - Low duty cycle with adaptive listen
 - Low duty cycle without adaptive listen
 - Fully active mode (no periodic sleeping)

Experiments: two-hop network

- Topology and measured energy consumption on source nodes
- S-MAC consumes much less energy than 802.11-like protocol w/o sleeping
- At heavy load, overhearing avoidance is the major factor in energy savings
- At light load, periodic sleeping plays the key role

![Graph showing energy consumption comparison between different protocols and sleep options](image-url)
Energy Consumption over Multi-Hops

- Ten-hop linear network at different traffic load
- 3 configurations of S-MAC
- At light traffic load, periodic sleeping has significant energy savings over fully active mode
- Adaptive listen saves more at heavy load by reducing latency

Latency as Hops Increase

- Adaptive listen significantly reduces latency caused by periodic sleeping
Throughput as Hops Increase

- Adaptive listen significantly increases throughput
- Using less time to pass the same amount of data

Combined Energy and Throughput

- Periodic sleeping provides excellent performance at light traffic load
- With adaptive listening, S-MAC achieves about the same performance as no-sleep mode at heavy load
Adaptive Listen Slots

- In S-MAC all nodes have listen slots of the same duration
- Different nodes might have different tx/rx patterns
- Idle listening wastes power
- Idea: adaptively change the idle listen slot

At variable workloads T-MAC uses 1/5 the power of S-MAC

Case Study: B-MAC

- Principles
 - Reconfigurable MAC Protocol
 - Flexible Control
 - Feedback to higher protocols
 - Minimal Implementation
Channel Access

- CSMA
 - Configurable back-off lengths
 - May be disabled
 - Link Layer Ack
- Clear Channel Assessment
 - Sliding window low pass
 - Less false positives than thresholding
 - Determines if energy on the channel
 - Important for Low Power Preamble Sampling

Low Power Listening (LPL)

- Periodically
 - Wake up, sample channel, and sleep
- Properties
 - Wake up time fixed
 - Variable ‘Check Time’
 - Preamble length matches wakeup interval
 - Overhear all data packets in cell
 - Duty cycle depends on number of neighbors and cell traffic
Estimating Node Lifetime

- Possible to estimate node lifetime from MAC power consumption
 - Sampling rate
 - Neighborhood size
 - Check Activity Interval

Implementing S-MAC on top of B-MAC

1. Start Radio
2. Radio started, CSMA enabled
3. SYNC packet received
4. Send RTS with CSMA enabled
5. CTS received
6. Disable CSMA, Enable ACK
7. Send DATA
8. Receive ACK
9. After timeout, stop Radio
10. Radio stopped
Factored vs Layered Protocols

- Experimental Setup
 - N nodes send as quickly as possible
 - Factored link layer approach never worse than traditional approach
 - Pay what you use

Power Consumption

- Per bit power consumption better for B-MAC
- What about per packet consumption?
Adaptivity is essential

- Many applications use tree routing
 - Different node types
 - Leafs vs. interior nodes
 - Nodes close to the tree root forward the majority of the data
 - Different duty cycles

Energy-efficient MAC protocols

- WSN-specific protocols
 - starting from 2000 (1 paper)
 - exponential growth (2004, 16+ papers)

Classification (up to May 2004, 20 papers)
- the number of channels used
- the degree of organization between nodes
- the way in which a node is notified of an incoming msg
Protocol classification

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Channels</th>
<th>Organization</th>
<th>Notification</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMACS</td>
<td>FDMA</td>
<td>frames</td>
<td>schedule</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACT</td>
<td>single</td>
<td>frames</td>
<td>schedule</td>
</tr>
<tr>
<td>PicoRadio</td>
<td>CDMA+tone</td>
<td>random</td>
<td>wakeup</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEM</td>
<td>data+ctrl</td>
<td>random</td>
<td>wakeup</td>
</tr>
<tr>
<td>Preamble sampling</td>
<td>single</td>
<td>random</td>
<td>listening</td>
</tr>
<tr>
<td>Arisha</td>
<td>single</td>
<td>frames</td>
<td>schedule</td>
</tr>
<tr>
<td>S-MAC</td>
<td>single</td>
<td>slots</td>
<td>listening</td>
</tr>
<tr>
<td>PCM</td>
<td>single</td>
<td>random</td>
<td>listening</td>
</tr>
<tr>
<td>Low Power Listening</td>
<td>single</td>
<td>random</td>
<td>listening</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Channels</th>
<th>Organization</th>
<th>Notification</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sift</td>
<td>single</td>
<td>random</td>
<td>listening</td>
</tr>
<tr>
<td>EMACs</td>
<td>single</td>
<td>frames</td>
<td>schedule</td>
</tr>
<tr>
<td>T-MAC</td>
<td>single</td>
<td>slots</td>
<td>listening</td>
</tr>
<tr>
<td>TRAMA</td>
<td>single</td>
<td>frames</td>
<td>schedule</td>
</tr>
<tr>
<td>WiseMAC</td>
<td>single</td>
<td>random</td>
<td>listening</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMA</td>
<td>single</td>
<td>frames</td>
<td>schedule</td>
</tr>
<tr>
<td>Miller</td>
<td>data+tone</td>
<td>random</td>
<td>wakeup+list</td>
</tr>
<tr>
<td>DMAC</td>
<td>single</td>
<td>slots</td>
<td>listening</td>
</tr>
<tr>
<td>SS-TDMA</td>
<td>single</td>
<td>frames</td>
<td>schedule</td>
</tr>
<tr>
<td>LMAC</td>
<td>single</td>
<td>frames</td>
<td>listening</td>
</tr>
<tr>
<td>B-MAC</td>
<td>single</td>
<td>random</td>
<td>listening</td>
</tr>
</tbody>
</table>

Spring 2005 CS 649 47

Spring 2005 CS 649 48
Case Study: Zigbee

- ZigBee
 - Industry standard through application profiles running over IEEE 802.15.4 radios
 - Target applications are sensors networks, interactive toys, smart badges, remote controls, and home automation

Frequencies and Data Rates

<table>
<thead>
<tr>
<th>BAND</th>
<th>COVERAGE</th>
<th>DATA RATE</th>
<th># OF CHANNEL(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 GHz</td>
<td>ISM</td>
<td>Worldwide</td>
<td>250 kbps</td>
</tr>
<tr>
<td>868 MHz</td>
<td>Europe</td>
<td>20 kbps</td>
<td>1</td>
</tr>
<tr>
<td>915 MHz</td>
<td>ISM</td>
<td>Americas</td>
<td>40 kbps</td>
</tr>
</tbody>
</table>
Device Types

- Three devices specified
 - Network Coordinator
 - Full Function Device (FFD)
 - Can talk to any device, more computing power
 - Reduced Function Device (RFD)
 - Can only talk to a FFD, simple for energy conservation
- CSMA/CA with optional ACKs on data packets
- Optional beacons with superframes
- Optional guaranteed time slots (GTS), which supports contention-free access

Supported Topologies

- MAC supports 2 topology setups: star and peer-to-peer
- Star topology supports beacon and no-beacon structure
 - All communication done through PAN coordinator
Star: Optional Beacon Structure

Beacon packet transmitted by PAN Coordinator to help synchronization of network devices. It includes: Network identifier, beacon periodicity and superframe structure.

Star Network: Communicating with a Coordinator

Figure 6—Communication to a coordinator in a beacon-enabled network

Figure 7—Communication to a coordinator in a non-beacon-enabled network
Star Network: Communicating from a Coordinator

Beacon packet indicates that there is data pending for a network device

Device sends request on a data slot

Network device has to ask coordinator if there is data pending.
If there is no data pending the Coordinator will respond with a zero Length data packet

Peer-to-Peer Data Transfer

- Peer-to-peer data transfer governed by the network layer – not specified by the standard
- Four types of frames the standard can use
 - Beacon frame – only needed by a coordinator
 - Data frame – used for all data transfers
 - ACK frame – confirm successful frame reception
 - A MAC Command Frame – MAC peer entity controls transfers
MAC Command Frame

MAC sublayer

<table>
<thead>
<tr>
<th>Octets</th>
<th>2</th>
<th>1</th>
<th>4 to 20</th>
<th>1</th>
<th>n</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Control</td>
<td>Sequence Number</td>
<td>Addressing Fields</td>
<td>Command Type</td>
<td>Command Payload</td>
<td>FCS</td>
<td></td>
</tr>
<tr>
<td>MHR</td>
<td>MSDU</td>
<td>MHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHY layer

<table>
<thead>
<tr>
<th>Octets</th>
<th>4</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Control</td>
<td>Sequence Number</td>
<td>Addressing Fields</td>
<td>Command Type</td>
</tr>
<tr>
<td>SHR</td>
<td>MPEU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame Length</th>
<th>SHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 + (4 to 20) + n</td>
<td></td>
</tr>
<tr>
<td>PPDU</td>
<td></td>
</tr>
</tbody>
</table>

Spring 2005
CS 649
59