CS450
Network Embedded Sensing Systems
Week 6: Medium Access Control

Andreas Terzis
http://hinrg.cs.jhu.edu/CS450/
Outline

• Background in MAC protocols
 • Role and features of MAC protocols
 • Scheduled access vs. Randomized access
 • Additional WSN requirements
• Two Examples
 • S-MAC
 • BMAC
Characteristics of Sensor Network

- A special wireless ad hoc network
 - Large number of nodes
 - Battery powered
 - Topology and density change
 - Nodes for a common task
 - In-network data processing
- Sensor-net applications
 - Sensor-triggered bursty traffic
 - Can often tolerate some delay
 - Speed of a moving object places a bound on network reaction time
MAC and its Classification

- Medium Access Control (MAC)
 - When and how nodes access the shared channel
- Classification of MAC protocols
 - Scheduled protocols
 - Schedule nodes onto different sub-channels
 - Examples: TDMA, FDMA, CDMA
 - Contention-based protocols
 - Nodes compete in probabilistic coordination
 - Examples: ALOHA (pure & slotted), CSMA
MAC Attributes

- Collision avoidance
 - Basic task of a MAC protocol
- Energy efficiency
- Scalability and adaptivity
 - Network size, node density and topology change
- Channel utilization
- Latency
- Throughput
- Fairness

Primary

Secondary
Energy Efficiency in MAC Design

• Energy is primary concern in sensor networks
• What causes energy waste?
 • Collisions
 • Control packet overhead
 • Overhearing unnecessary traffic
 • Long idle time
 • Bursty traffic in sensornet applications
 • Idle listening consumes 50—100% of the power for receiving
 Dominant factor
 • Wakeup period = sleep period + listen period
 • Duty Cycle = listen period/Wakeup period
Scheduled Protocols

- TDMA
 - Advantages
 - No collisions
 - Energy efficient — easily support low duty cycles
 - Disadvantages
 - Bad scalability and adaptivity
 - Difficult to accommodate node changes
 - Difficult to handle inter-cluster communication
 - Requires strict time synchronization
Scheduled Protocols

- Polling
 - A master plus one or more slaves (star topology)
 - The master node decides which slave can send by polling the corresponding slave
 - Only direct communication between the master and a slave
 - A special TDMA without pre-assigned slots
- Examples
 - IEEE 802.11 infrastructure mode (CFP)
 - Bluetooth *piconets*
Bluetooth

• Target for wireless personal area network (WPAN)
 • Short range, moderate bandwidth, low latency
 • IEEE 802.15.1 (MAC + PHY) is based on Bluetooth
• Nodes are clustered into piconets
 • Each piconet has a master and up to 7 slaves – scalability problem
 • The master polls each slave for transmission
• Frequency-hopping CDMA between clusters
• Multiple connected piconets form a scatternet
 • Different to handle inter-cluster communications
Scheduled Protocols

- Bluetooth (Cont.)
 - How about Bluetooth radio with sensor networks?
 - Scalability is a big problem
 - Lack of multi-hop support
 - No commercial Bluetooth radio supports *scatternet* so far
 - Use two radios – expensive and energy inefficient
 - A node temporarily leave one piconet and joins another – high overhead and long delay
Scheduled Protocols

- Achieving peer-to-peer communications
- Self-Organization — by Sohrabi and Pottie
 - Have a pool of independent channels
 - Frequency band or spreading code
 - Potential interfering links select different channels
 - Talk to neighbors in different time slots
 - Sleep in unscheduled time slots
 - Looks like TDMA, but actually FDMA or CDMA
 - Any pair of two nodes can talk at the same time
 - Low bandwidth utilization
Scheduled Protocols

• LEACH: Low-Energy Adaptive Clustering Hierarchy — by Heinzelman, et al.
 • Similar to Bluetooth
 • CDMA between clusters
 • TDMA within each cluster
 • Static TDMA frame
 • Cluster head rotation
 • Node only talks to cluster head
 • Only cluster head talks to base station (long dist.)
• The same scalability problem
Contention-Based Protocols

- Contention-based protocols
 - CSMA — Carrier Sense Multiple Access
 - Listening before transmitting
 - Not enough for multi-hop networks (collision at receiver)

```
  a  b  c

Hidden terminal: a is hidden from c’s carrier sense
```

- CSMA/CA (CA stands for Collision Avoidance)
 - RTS/CTS handshake before send data
 - Other nodes (e.g. node c) delay transmission
 - Network Allocation Vector NAV aka virtual carrier sense
Contestion-Based Protocols

- Contention-based protocols (contd.)
 - MACA — Multiple Access w/ Collision Avoidance
 - Add duration field in RTS/CTS informing other nodes about their delay time
 - MACAW — improved over MACA
 - RTS/CTS/DATA/ACK
 - Fast error recovery at link layer
 - IEEE 802.11 Distributed Coordination Function (DCF)
 - Largely based on MACAW
Contention-Based Protocols

- Transmission rate control — by Woo and Culler
 - Based on a special network setup
 - A base station tries to collect data equally from all sensors in the network
 - CSMA + adaptive rate control
 - Promote fair bandwidth allocation to all sensors
 - Nodes close to the base station forward more traffic, and have less chances to send their own data
 - Helps in congestion avoidance
Scheduled vs. Contention Protocols

<table>
<thead>
<tr>
<th></th>
<th>Scheduled Protocols</th>
<th>Contention Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collisions</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>Good</td>
<td>Bad</td>
</tr>
<tr>
<td>Scalability and adaptivity</td>
<td>Bad</td>
<td>Good</td>
</tr>
<tr>
<td>Multi-hop communication</td>
<td>Difficult</td>
<td>Easy</td>
</tr>
<tr>
<td>Time synchronization</td>
<td>Strict CS 450</td>
<td>Loose or not required</td>
</tr>
</tbody>
</table>
Energy Efficiency in Contention Protocols

- Contention-based protocols need to work hard in all directions for energy savings
 - Reduce idle listening – support low duty cycle
 - Reduce control overhead
 - Reduce collisions
 - Avoid unnecessary overhearing
Energy-Efficient MAC Design

- PAMAS: Power Aware Multi-Access with Signaling — by Singh and Raghavendra
 - Improve energy efficiency from MACA
 - Avoid overhearing by putting node into sleep
 - Use separate control and data channels
 - RTS, CTS, busy tone to avoid collision
 - Probe packets to find neighbors transmission time
 - Increased hardware complexity
 - Two channels need to work simultaneously, meaning two radio systems.
Energy-Efficient MAC Design

- Power save (PS) mode in IEEE 802.11 DCF
 - Assumption: all nodes are synchronized and can hear each other (single hop)
 - Nodes in PS mode periodically listen for beacons & ATIMs (ad hoc traffic indication messages)
- Beacon: timing and physical layer parameters
 - All nodes participate in periodic beacon generation
- ATIM: notifies receivers in PS mode to stay awake for Rx
 - ATIM follows a beacon sent/received
 - Unicast ATIM needs acknowledgement
 - Broadcast ATIM wakes up all nodes — no ACK
Energy-Efficient MAC Design

• Unicast example of PS mode in 802.11 DCF
Zigbee (I)

- Industry standard through application profiles running over IEEE 802.15.4 radios
- Target applications are sensors networks, interactive toys, smart badges, remote controls, and home automation
 - Personal Area Networks (PANs)
Zigbee (II)

- Three devices specified
 - Network Coordinator
 - Full Function Device (FFD)
 - Can talk to any device, more computing power
 - Reduced Function Device (RFD)
 - Can only talk to a FFD, simple for energy conservation
- Operation modes
 - Random access
 - CSMA/CA with optional ACKs on data packets
 - Scheduled access
 - Optional guaranteed time slots (GTS), which supports contention-free access
ZigBee (III)

- FFD acting as PAN coordinator periodically transmits frame beacon
 - Indicates start and configuration of **superframe**
 - Active and Inactive periods
 - Active period contains 16 slots
 - Contention Access Period (CAP) and Guaranteed Time Slots (GTSs)
Case Study: S-MAC

• S-MAC — by Ye, Heidemann and Estrin
• Tradeoffs
 - Latency
 - Fairness
 - Energy

• Major components in S-MAC
 - Periodic listen and sleep
 - Collision avoidance
 - Overhearing avoidance
 - Massage passing
Coordinated Sleeping

- Problem: Idle listening consumes significant energy
- Solution: Periodic listen and sleep

- Turn off radio when sleeping
- Reduce duty cycle to ~ 10% (120ms on/1.2s off)

Latency 🙁 ➔ 🙆 Energy
Coordinated Sleeping

- Schedules can differ

Node 1:
- Listen
- Sleep
- Listen
- Sleep

Node 2:
- Listen
- Sleep
- Listen
- Sleep

- Prefer neighboring nodes have same schedule — easy broadcast & low control overhead

Schedule 1

Schedule 2

Border nodes: two schedules
Coordinated Sleeping

- Schedule Synchronization
 - New node tries to follow an existing schedule
 - Remember neighbors’ schedules
 - to know when to send to them
 - Each node broadcasts its schedule every few periods of sleeping and listening
 - Re-sync when receiving a schedule update
- Periodic neighbor discovery
 - Keep awake in a full sync interval over long periods
Coordinated Sleeping

- Adaptive listening
 - Reduce multi-hop latency due to periodic sleep
 - Wake up for a short period of time at end of each transmission

- Reduce latency by at least half
Collision Avoidance

- S-MAC is based on contention
- Similar to IEEE 802.11 ad hoc mode (DCF)
 - Physical and virtual carrier sense
 - Randomized backoff time
 - RTS/CTS for hidden terminal problem
 - RTS/CTS/DATA/ACK sequence
Overhearing Avoidance

- Problem: Receive packets destined to others
- Solution: Sleep when neighbors talk
 - Basic idea from PAMAS (Singh, Raghavendra 1998)
 - But we only use in-channel signaling
- Who should sleep?
 - All immediate neighbors of sender and receiver
- How long to sleep?
 - The duration field in each packet informs other nodes the sleep interval
Message Passing

- **Problem:** Sensor net in-network processing requires *entire* message
- **Solution:** Don’t interleave different messages
 - Long message is fragmented & sent in burst
 - RTS/CTS reserve medium for entire message
 - Fragment-level error recovery — ACK
 — extend Tx time and re-transmit immediately
- Other nodes sleep for whole message time

Fairness 🙁 → Energy 🙌
Msg-level latency
Implementation on Testbed Nodes

- Platform
 - Mica Motes (UC Berkeley)
 - 20Kbps radio at 433MHz
- Configurable S-MAC options
 - Low duty cycle with adaptive listen
 - Low duty cycle without adaptive listen
 - Fully active mode (no periodic sleeping)
Experiments: two-hop network

- Topology and measured energy consumption on source nodes
- Source 1 ➔ Sink 1
- Source 2 ➔ Sink 2

- S-MAC consumes much less energy than 802.11-like protocol w/o sleeping
- At heavy load, overhearing avoidance is the major factor in energy savings
- At light load, periodic sleeping plays the key role
Energy Consumption over Multi-Hops

- Ten-hop linear network at different traffic load
- 3 configurations of S-MAC
- At light traffic load, periodic sleeping has significant energy savings over fully active mode
- Adaptive listen saves more at heavy load by reducing latency
Latency as Hops Increase

- Adaptive listen significantly reduces latency caused by periodic sleeping.

![Graphs showing latency increase with number of hops for two different traffic loads with and without adaptive listen.](image)
Throughput as Hops Increase

- Adaptive listen significantly increases throughput

- Using less time to pass the same amount of data
Combined Energy and Throughput

- Periodic sleeping provides excellent performance at light traffic load
- With adaptive listening, S-MAC achieves about the same performance as no-sleep mode at heavy load
Adaptive Listen Slots

- In S-MAC all nodes have listen slots of the same duration
 - Different nodes might have different tx/rx patterns
 - Idle listening wastes power
 - Idea: adaptively change the idle listen slot

B-MAC

• What is BMAC?
 • A configurable MAC protocol for WSNs
 • Small core
 • Factors out higher-level functionality
 • Energy efficient

• Goals
 • Low Power operation
 • Effective collision avoidance
 • Simple and predictable
 • Small code size and RAM usage
 • Tolerable to changing RF/networking conditions
 • Scalable to large numbers of nodes
Clear Channel Assessment

- MAC must accurately determine if channel is clear
 - Need to tell what is noise and what is a signal
 - Ambient noise is prone to environmental changes
- BMAC solution: ‘software automatic gain control’
 - Signal strength samples taken when channel is assumed to be free
 - Samples go in a FIFO queue (sliding window)
 - Median added to an EWMA filter
 - Once noise floor is established, a TX requests starts monitoring RSSI from the radio
CCA: single-sample thresholding vs. outlier detection

• Common approach: take single sample, compare to noise floor
 • Large number of false negatives
• BMAC: search for outliers in RSSI
 • If a sample has significantly lower energy than the noise floor during the sampling period, then channel is clear
CCA results

- 0=busy, 1=clear
- Packet arrives between 22 and 54 ms
- Single-sample thresholding produces several false ‘busy’ signals
Low Power Listening

- Goal: minimize listen cost
- Principles
 - Node periodically wakes up, turns radio on and checks channel
 - Wakeup time fixed
 - “Check time” variable
 - If energy is detected, node powers up in order to receive the packet
 - Node goes back to sleep
 - If a packet is received
 - After a timeout
 - Preamble length matches channel checking period
 - No explicit synchronization required
 - Noise floor estimation used to detect channel activity during LPL
Radio power up sequence of operations

- Goals
 - Minimize time radio is on
 - Minimize number of times radio gets started
 - Minimize sampling time (stage e)
LPL check interval

- Single-hop application doing periodic data sampling
- Sampling rate (traffic pattern) defines optimal check interval
- Check interval
 - Too small: energy wasted on idle listening
 - Too large: energy wasted on transmissions (long preambles)
- In general, it’s better to have larger preambles than to check more often!