Outline

- Background in MAC protocols
 - Role and features of MAC protocols
 - Scheduled access vs. Randomized access
 - Additional WSN requirements
- Two Examples
 - S-MAC
 - BMAC
Characteristics of Sensor Network

- A special wireless ad hoc network
 - Large number of nodes
 - Battery powered
 - Topology and density change
 - Nodes for a common task
 - In-network data processing

- Sensor-net applications
 - Sensor-triggered bursty traffic
 - Can often tolerate some delay
 - Speed of a moving object places a bound on network reaction time
MAC and its Classification

- Medium Access Control (MAC)
 - When and how nodes access the shared channel

- Classification of MAC protocols
 - Scheduled protocols
 - Schedule nodes onto different sub-channels
 - Examples: TDMA, FDMA, CDMA
 - Contention-based protocols
 - Nodes compete in probabilistic coordination
 - Examples: ALOHA (pure & slotted), CSMA
MAC Attributes

- Collision avoidance
 - Basic task of a MAC protocol
- Energy efficiency
- Scalability and adaptivity
 - Network size, node density and topology change
- Channel utilization
- Latency
- Throughput
- Fairness
Energy Efficiency in MAC Design

- Energy is primary concern in sensor networks
- What causes energy waste?
 - Collisions
 - Control packet overhead
 - Overhearing unnecessary traffic
 - Long idle time
 - Bursty traffic in sensornet applications
 - Idle listening consumes 50—100% of the power for receiving
 - Wakeup period = sleep period + listen period
 - Duty Cycle = listen period/Wakeup period
Scheduled Protocols

- **TDMA**

 - **Advantages**
 - No collisions
 - Energy efficient — easily support low duty cycles

 - **Disadvantages**
 - Bad scalability and adaptivity
 - Difficult to accommodate node changes
 - Difficult to handle inter-cluster communication
 - Requires time synchronization
Scheduled Protocols

- Polling
 - A master plus one or more slaves (star topology)
 - The master node decides which slave can send by polling the corresponding slave
 - Only direct communication between the master and a slave
 - A special TDMA without pre-assigned slots
- Examples
 - IEEE 802.11 infrastructure mode (CFP)
 - Bluetooth piconets
Contention-Based Protocols

- Contention-based protocols
 - CSMA — Carrier Sense Multiple Access
 - Listening before transmitting
 - Collisions can still occur
 - CSMA/CA (CA stands for Collision Avoidance)
 - RTS/CTS handshake before send data
 - Other nodes (e.g., node c) delay transmission

Hidden terminal: a is hidden from c’s carrier sense
Examples of Contention-Based MACs

- **MACA** — Multiple Access w/ Collision Avoidance
 - Add duration field in RTS/CTS informing other nodes about their delay time

- **MACAW** — improved over MACA
 - RTS/CTS/DATA/ACK
 - Fast error recovery at link layer
Scheduled vs. Contention Protocols

<table>
<thead>
<tr>
<th></th>
<th>Scheduled Protocols</th>
<th>Contention Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collisions</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>Good</td>
<td>Bad</td>
</tr>
<tr>
<td>Scalability and adaptivity</td>
<td>Bad</td>
<td>Good</td>
</tr>
<tr>
<td>Multi-hop communication</td>
<td>Difficult</td>
<td>Easy</td>
</tr>
<tr>
<td>Time synchronization</td>
<td>Strict</td>
<td>Loose or not required</td>
</tr>
</tbody>
</table>
Case Study: S-MAC

- S-MAC — by Ye, Heidemann and Estrin

- Tradeoffs
 - Increase latency and decrease fairness to improve energy efficiency

- Major components in S-MAC
 - Periodic listen and sleep
 - Collision avoidance
 - Overhearing avoidance
 - Massage passing
Coordinated Sleeping

- Problem: Idle listening consumes significant energy
- Solution: Periodic listen and sleep

 - Turn off radio when sleeping
 - Reduce duty cycle to ~ 10% (120ms on/1.2s off)

![Diagram showing listen and sleep cycles with latency and energy trade-off]
Coordinated Sleeping

- Schedules can differ

Choose neighboring nodes to have the same schedule—easy broadcast and low control overhead.

Border nodes: two schedules
Coordinated Sleeping

- **Schedule Synchronization**
 - New node tries to follow an existing schedule
 - Remember neighbors’ schedules — to know when to send to them
 - Each node broadcasts its schedule every few periods of sleeping and listening
 - Re-sync when receiving a schedule update

- **Periodic neighbor discovery**
 - Keep awake in a full sync interval over long periods
Coordinated Sleeping

- **Adaptive listening**
 - Reduce multi-hop latency due to periodic sleep
 - Wake up for a short period of time at end of each transmission

- Reduces latency by at least half
Collision Avoidance

- S-MAC is based on contention
- Similar to IEEE 802.11 ad hoc mode (DCF)
 - Physical and virtual carrier sense
 - Randomized backoff time
 - RTS/CTS for hidden terminal problem
 - RTS/CTS/DATA/ACK sequence
Overhearing Avoidance

- Problem: Receive packets destined to others
- Solution: Sleep when neighbors talk
 - Basic idea from PAMAS (Singh, Raghavendra 1998)
 - But we only use in-channel signaling
- Who should sleep?
 - All immediate neighbors of sender and receiver
- How long to sleep?
 - The duration field in each packet informs other nodes the sleep interval
Implementation on Testbed Nodes

- Platform
 - Mica Motes (UC Berkeley)
 - 20Kbps radio at 433MHz

- Configurable S-MAC options
 - Low duty cycle with adaptive listen
 - Low duty cycle without adaptive listen
 - Fully active mode (no periodic sleeping)
Experiments: two-hop network

- **Topology and measured energy consumption on source nodes**
 - Source 1 -> Sink 1
 - Source 2 -> Sink 2

- S-MAC consumes much less energy than 802.11-like protocol w/o sleeping
- At heavy load, overhearing avoidance is the major factor in energy savings
- At light load, periodic sleeping plays the key role

![Average energy consumption in the source nodes](image)

Energy consumption (mJ) vs. Message inter-arrival period (second)

- 802.11-like protocol without sleep
- No periodic sleep
- S-MAC periodic sleep
Energy Consumption over Multi-Hops

- Ten-hop linear network at different traffic load

- At light traffic load, periodic sleeping has significant energy savings over fully active mode

- Adaptive listen saves more at heavy load by reducing latency
Latency as Hops Increase

- Adaptive listen significantly reduces latency caused by periodic sleeping.

![Graph showing latency under lowest traffic load with and without adaptive listen, and with and without sleep cycles.]

![Graph showing latency under highest traffic load with and without adaptive listen, and with and without sleep cycles.]
Throughput as Hops Increase

- Adaptive listen significantly increases throughput
 - Using less time to pass the same amount of data
Combined Energy and Throughput

- Periodic sleeping provides excellent performance at light traffic load
- With adaptive listening, S-MAC achieves about the same performance as no-sleep mode at heavy load
Adaptive Listen Slots

- In S-MAC all nodes have listen slots of the same duration
 - Different nodes might have different tx/rx patterns
 - Idle listening wastes power
 - Idea: adaptively change the idle listen slot

Low Power Listening

- **Goal:** minimize listen cost

- **Principles**
 - Node periodically wakes up, turns radio on and checks channel
 - **Wakeup time fixed**
 - **“Check time” variable**
 - If energy is detected, node powers up in order to receive the packet
 - Node goes back to sleep
 - If a packet is received
 - After a timeout
 - Preamble length matches channel checking period
 - **No explicit synchronization required**
 - **Noise floor estimation used to detect channel activity during LPL**
Radio power up sequence of operations

- **Goals**
 - Minimize time radio is on
 - Minimize number of times radio gets started
 - Minimize sampling time (stage e)
LPL check interval

- Single-hop application doing periodic data sampling
- Sampling rate (traffic pattern) defines optimal check interval
- Check interval
 - Too small: energy wasted on idle listening
 - Too large: energy wasted on transmissions (long preambles)
- In general, it’s better to have larger preambles than to check more often!