Computer Network Fundamentals
Spring 2008

Final Review
Andreas Terzis
Final

• Monday May 12th
 – 2-4 pm
 – Hodson 210

• Details
 – Closed books
 – Bring a calculator
 – Combination of quantitative and qualitative questions
Transport Protocols

- Provide end-to-end services on top of raw, unreliable packet delivery
- UDP: User Datagram Protocol
- TCP: Transmission Control Protocol
Common Functionality

- Demultiplexing: Source/Destination ports
- Checksum (optional in UDP)
How Data Gets End-to-End

- MAC address (from ARP)
- IP address (from DNS)
- Protocol (in IP header)
- Port # (from OS)
Additional TCP Functionality

- Reliable delivery
- Congestion control
Timing Diagram

3-way handshake

SYN k
SYN n; ACK k+1
DATA k+1; ACK n+1
ACK k+m+1

Data exchange

ACK k+m+1

Close connect.

FIN
FIN ACK
1/2 close

Open connect.

Transfer

FIN
FIN ACK
1/2 close
TCP Reliable Delivery

- Sender waits for ACK of data
 - if data not ACK’ed, retransmit
- Sliding window approach:
 - Allow W segments in flight at any time
 - ACK last segment received
- Two signs for retransmission:
 - timeout
 - duplicate ACKs
Congestion Control

• Signals of congestion:
 – Packet drops: timeouts or duplicate ACKs
 – Explicit signals: ECN

• Three goals:
 – quickly approach the available bandwidth
 – adjust to small (and large) variations in bandwidth
 – share bandwidth fairly with other flows
Slow-Start

- Increase cwnd by 1 for every ACK until cwnd hits ssthresh
- Sending rate increases exponentially (until queueing sets in or sshtresh is hit)
Congestion-Avoidance

- Cwnd increase by $1/cwnd$ for every ACK
- Set ssthresh = $cwnd/2$ upon loss
- Cwnd decreases by $1/2$ upon 3 duplicate ACKs
- Cwnd goes to 1 upon timeout
Window Dynamics

- Cwnd increases quickly
- Begins oscillating around appropriate value
- As long as no timeout, can usually keep pipe full
Why AIMD?

- MIMD and AIAD could also work
- But neither results in fair bandwidth allocation
AIMD Sharing Dynamics

- No congestion \rightarrow rate increases by one packet/RTT every RTT
- Congestion \rightarrow decrease rate by factor 2

Rates equalize \rightarrow fair share
AIAD Sharing Dynamics

- No congestion \rightarrow x increases by one packet/RTT every RTT
- Congestion \rightarrow decrease x by 1
AIMD

Limit rates:

$x = y$
Limit rates: x and y depend on initial values.
TCP Congestion Control Summary

• Measure available bandwidth
 – slow start: fast, hard on network
 – AIMD: slow, gentle on network

• Detecting congestion
 – timeout based on RTT
 • robust, causes low throughput
 – Fast Retransmit: avoids timeouts when few packets lost
 • can be fooled, maintains high throughput

• Recovering from loss
 – Fast recovery: don’t set cwnd=1 with fast retransmits
Quality-of-Service

• Integrated Services (IntServ)
 – services: controlled load and guaranteed service
 – RSVP (reservation protocol)
 – packet scheduling algorithms
 – admission control algorithms
 • measurement-based for controlled load
 • worst-case for guaranteed service

• Differentiated Services (DiffServ)
 – per-hop behaviors
 – think of priority levels (specified by ToS bits)
Application Layer

- DNS
- HTTP/CDN
From Names to Addresses

- Users use hostnames
- Protocols use IP addresses
- DNS translates between them
Naming Hierarchy

Names provide:
• Easy mnemonic
• Level of indirection

Hierarchy provides
• scalability
• fate-sharing and trust model
• local management (uniqueness)
Simple DNS Example

Host `whistler.cs.cmu.edu` wants IP address of `www.berkeley.edu`
1. Contacts its local DNS server, `mango.srv.cs.cmu.edu`
2. `mango.srv.cs.cmu.edu` contacts root name server, if necessary
3. Root name server contacts authoritative name server, `ns1.berkeley.edu`, if necessary
HTTP overview

HTTP: hypertext transfer protocol
- Web’s application layer protocol
- client/server model
 - client: browser that requests, receives, “displays” Web objects
 - server: Web server sends objects in response to requests
- HTTP 1.0: RFC 1945
- HTTP 1.1: RFC 2068

PC running Explorer

Server running Apache Web server

Mac running Navigator
HTTP Topics

- Non-persistent vs. persistent connections
- Authorization
- Cookies
- Client-side Caching and conditional GETs
The end

• Thank you!
 Good luck!