Computer Network Fundamentals
Spring 2007

Week 12
TCP Flavors, RED, ECN
Andreas Terzis
Outline

• TCP congestion control
 – Quick Review
 – TCP flavors
 – Impact of losses
 – Cheating

• Router-based support
 – RED
 – ECN
Quick Review

• Slow-Start: $cwnd++$ upon every new ACK
• Congestion avoidance: AIMD if $cwnd > ssthresh$
 - ACK: $cwnd = cwnd + 1/cwnd$
 - Drop: $ssthresh = cwnd/2$ and $cwnd=1$

• Fast Recovery:
 - duplicate ACKS: $cwnd=cwnd/2$
 - Timeout: $cwnd=1$
TCP Flavors

- **TCP-Tahoe**
 - cwnd = 1 whenever drop is detected

- **TCP-Reno**
 - cwnd = 1 on timeout
 - cwnd = cwnd/2 on dupack

- **TCP-SACK**
TCP-SACK

• SACK = Selective Acknowledgements

• ACK packets identify exactly which packets have arrived

• Makes recovery from multiple losses much easier
Standards?

- How can all these algorithms coexist?

- Don’t we need a single, uniform standard?

- What happens if I’m using Reno and you are using Tahoe, and we try to communicate?
Cheating

• Three main ways to cheat:
 - increasing cwnd faster than 1 per RTT
 - using large initial cwnd
 - Opening many connections
Increasing cwnd Faster

Limit rates:
- \(x = 2y \)
- \(x \) increases by 2 per RTT
- \(y \) increases by 1 per RTT
Increasing cwnd Faster
Larger Initial cwnd

x starts SS with cwnd = 4
y starts SS with cwnd = 1
Open Many Connections

Assume
• A starts 10 connections to B
• D starts 1 connection to E
• Each connection gets about the same throughput

Then A gets 10 times more throughput than D
Cheating and Game Theory

D → Increases by 1 ▶ Increases by 5

<table>
<thead>
<tr>
<th></th>
<th>A → Increases by 1</th>
<th>A → Increases by 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>22, 22</td>
<td>10, 35</td>
</tr>
<tr>
<td>E</td>
<td>35, 10</td>
<td>15, 15</td>
</tr>
</tbody>
</table>

Individual incentives: cheating pays
Social incentives: better off without cheating

Too aggressive ➔ Losses ➔ Throughput falls
Lossy Links

- TCP assumes that all losses are due to congestion
- What happens when the link is lossy?
- Tput $\sim \frac{1}{\sqrt{p}}$ where p is loss prob.
- This applies even for non-congestion losses
Example
What can routers do to help?
Paradox

- Routers are in middle of action
- But traditional routers are very passive in terms of congestion control
 - FIFO
 - Drop-tail
FIFO: First-In First-Out

- Maintain a queue to store all packets
- Send packet at the head of the queue

![Diagram of FIFO queue](image)
Tail-drop Buffer Management

- Drop packets only when buffer is full
- Drop arriving packet
Ways Routers Can Help

• Packet scheduling: non-FIFO scheduling

• Packet dropping:
 - not drop-tail
 - not only when buffer is full

• Congestion signaling
Question!

• Why not use infinite buffers?
 – no packet drops!
The Buffer Size Quandary

• Small buffers:
 - often drop packets due to bursts
 - but have small delays

• Large buffers:
 - reduce number of packet drops (due to bursts)
 - but increase delays

• Can we have the best of both worlds?
Random Early Detection (RED)

- Basic premise:
 - router should signal congestion when the queue first starts building up (by dropping a packet)
 - but router should give flows time to reduce their sending rates before dropping more packets
- Therefore, packet drops should be:
 - early: don’t wait for queue to overflow
 - random: don’t drop all packets in burst, but space drops out
RED

- FIFO scheduling
- Buffer management:
 - Probabilistically discard packets
 - Probability is computed as a function of average queue length (why average?)
RED (cont’d)

- min_th – minimum threshold
- max_th – maximum threshold
- avg_len – average queue length
 - \(\text{avg}_\text{len} = (1-w)\times\text{avg}_\text{len} + w\times\text{sample}_\text{len} \)
RED (cont’d)

- If (avg_len < min_th) \(\rightarrow\) enqueue packet
- If (avg_len > max_th) \(\rightarrow\) drop packet
- If (avg_len >= min_th and avg_len < max_th) \(\rightarrow\) enqueue packet with probability \(P\)

![Graph showing discard probability (P) against queue length]
RED (cont’d)

- \(P = \max_P \times \frac{\text{avg}_\text{len} - \text{min}_\text{th}}{\text{max}_\text{th} - \text{min}_\text{th}} \)
Average vs. Instantaneous Queue

![Graph showing average vs. instantaneous queue size over time](image)
RED Advantages

- High network utilization with low delays
- Average queue length small, but capable of absorbing large bursts
- Many refinements to basic algorithm make it more adaptive (requires less tuning)
Explicit Congestion Notification

• Rather than drop packets to signal congestion, router can send an explicit signal

• Explicit congestion notification (ECN):
 – instead of optionally dropping packet, router sets a bit in the packet header
 – If data packet has bit set, then ACK has ECN bit set

• Backward compatibility:
 – bit in header indicates if host implements ECN
 – note that not all routers need to implement ECN
Picture
ECN Advantages

• No need for retransmitting optionally dropped packets

• No confusion between congestion losses and corruption losses