Network Subsystems Reloaded: A High-Performance, Defensible Network Subsystem

Anshumal Sinha, Sandeep Sarat, Jonathan S. Shapiro

Systems Research Laboratory
The Johns Hopkins University
Monolithic Network Subsystems

- Issues with the monolithic network subsystems
 - Single point of failure.
 - Difficult to achieve per-client resource accountability.
 - Robustness-critical code is large.
 - Difficult to maintain and debug the code.
 - Simultaneous existence of multiple protocols not easy.
 - Limit the ability to perform application specific optimizations.
Why Use Monolithic Network Subsystem

- Performance !
- Performance !!
- Performance !!!

- No viable alternative.
Background

- Previous attempts:
 - Thekkath et al. [93] implemented user-level network on Mach 3.0
 - U-net [95] implemented user-level network for parallel and distributed architecture.
 - Exo-kernel [02] provided application level resource management in Xok/ExOS.

- Failed to deliver sufficient throughput using commodity hardware and address defensibility at the same time.
Hypothesis

- Key issue in factoring is avoiding data motion.
- Earlier operating systems did not provide appropriate properties to facilitate such factoring.
- EROS supports domain factored design.
Methodology

- Built two network systems:
 - EROS Monolithic Network Subsystem
 - EROS Domain Factored Network Subsystem
- Both subsystems based on lwIP stack.
 - Easy to port.
 - Not optimized for performance.
- Drivers based on Linux.
EROS Monolithic Network Subsystem

- Similar to monolithic network subsystem.

![Diagram showing the relationship between Hardware, Kernel, User Level, Monolithic Stack, Client Application, T: Timeout Helper, I: IRQ Helper]
EROS Domain Factored Network

- **Data**
- **Headers**
- **Client Application**
- **Network Stack**
- **Enet Layer**
- **Shared Region**

T: Timeout Helper
R: Receive Helper
I: IRQ Helper

User Level
Kernel

Hardware
Various Network Subsystems

- Traditional Monolithic (Linux)
 - Client Application
 - N/W Stack
 - Ethernet Driver
 - Hardware

- EROS Monolithic
 - Client Application
 - N/W Stack
 - Ethernet Driver
 - Hardware

- EROS Domain Factored
 - Client Application
 - N/W Stack
 - Ethernet Driver
 - Hardware
Performance:

- Measures of interest are latency and throughput.
- Ethernet Cards 100Mbps and Gigabit Ethernet.
Conclusion

- Factoring is more feasible than previously assumed.
- Supports Blackwell’s claim on significance of instruction cache locality.
- Factoring provides basis for building defensible system.
The End.
Performance: ttcp

- ttcp
 - 100M : 32768 bytes
 - Linux : 11.54 MBps
 - EROS Monolithic : 11.62 MBps
 - EROS Factored : 11.61 MBps
 - GigE : 32768 bytes
 - Linux : 62.30 MBps
 - EROS Monolithic : 60.80 MBps
 - EROS Factored : 54.42 MBps
Invocation path
Ring Buffer

A Single buffer
- Status
 - Payload Size
 - Next Buffer
- Payload

Buffer Linkages
(Incoming data spans these buffers)
Shared memory
Shared memory region
EROS Monolithic