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Abstract
The availability of multiple frequency channels on mod-

ern radios has provided a way to improve networking perfor-
mance. Nevertheless, current multi-channel protocols lack
the architectural consistency and flexibility to support a di-
verse set of applications. In this paper we argue that it is
necessary to integrate channel switching to the emerging
wireless sensor network architecture and propose a way to
decompose the problem into two reusable components: the
channel allocation component that is integrated with network
layer protocols and a shared channel synchronization com-
ponent at the MAC layer. Furthermore, we outline how ex-
isting multi-channel protocols can be re-factored to comply
with the proposed architecture and present ViR, an initial im-
plementation of the channel synchronization component. Fi-
nally, using realistic applications synthesized from existing
protocols, we show how ViR reduces conflicts among proto-
cols and reduces packet losses.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Net-

work Protocols—Routing protocols; D.4.7 [Operating Sys-
tem]: Organization and Design—Real-time systems and em-
bedded systems

General Terms
Design, Experimentation, Standardization

Keywords
Sensor Networks, Protocol Architecture, Network Ab-

straction, Radio Virtualization

1 Introduction
Modern radios used in wireless sensor networks, such as

those that implement the IEEE 802.15.4 PHY standard [5],
can operate in multiple frequency bands. Previous work
has shown that this capability can be used to increase the
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throughput of WSNs [16], reduce intra-network interfer-
ence [9, 18], and reduce the impact of external interference
to WSNs [11]. Despite these benefits, the mechanisms pro-
posed thus far are implemented at different layers of the pro-
tocol stack, are incompatible, make assumptions about the
applications’ characteristics, and do not support multiple ap-
plications at the same time.

In this paper we argue that it is time to rethink how
multi-channel protocols are engineered and reach a con-
sensus about how they fit in the emerging WSN architec-
ture [2, 6, 10]. Such an agreement will promote interoper-
ability and code reuse and is likely to simplify the devel-
opment of applications that will benefit from radio channel
diversity. The additional challenge is to do this integration
with minimal disruption to the existing protocol stack and
application archetypes.

We posit that multi-channel protocols can be factored
into two different components: a Channel Allocation (CA)
component responsible for allocating one or more frequency
channels to upper layers and a Channel Synchronization (CS)
component that determines the time interval that a node
should switch its radio to a certain channel. Network-level
protocols can include their own CA components, allowing
them to express specific ways of using frequency channels.
For example, real-time network protocols can reduce data
delivery latency due to channel switching by switching all
nodes over an end-to-end network path to the same channel.
On the other hand, a single CS component is implemented at
the MAC layer that exposes the same MAC-layer interface
and augments it with a minimal interface for using multiple
frequency channels.

We describe a straw man implementation of the proposed
components and outline how existing multi-channel proto-
cols can be re-factored along these lines. Finally, we show
how the proposed architecture can be used to virtualize the
radio among multiple network layer protocols that run con-
currently on the same mote.

2 Background
2.1 Benefits of Using Multiple Channels

We group multi-channel protocols into three categories
based on their primary purpose for using multiple frequency
channels.

Improve network throughput. Wu et al. proposed the
TMCP multi-channel tree collection protocol and observed



that the network throughput doubled as the number of avail-
able channels increased from two to eight [16]. Zhang et
al. proposed the TMMAC MAC protocol and showed that it
achieved seven times the throughput of the standard 802.11
DCF protocol in a simulated network with 40 concurrent
flows when six channels were available [17].

Minimize intra-network interference. Since the radio
is a shared medium, concurrent transmissions in the same
broadcast domain result in collisions and possibly packet
losses. Wu et al. presented empirical results suggesting that
802.15.4 radios have a maximum of eight orthogonal chan-
nels1 [16]. Zhou et al. [18] and Liang et al. [9] used chan-
nel diversity to reduce the number of conflicting transmis-
sions. The latter work also observed that channel diversity
promotes spatial reuse and reduces the latency of network-
wide dissemination.

Avoid external interference. Considering that multiple
radio standards operate in the same unlicensed frequency
bands (e.g., 802.11, 802.15.4, and 802.15.1 all operate in the
2.4 GHz band), channel diversity is one method to mitigate
external interference among collocated networks. The Wire-
lessHART standard offers an example of this approach [11].
It employs a TDMA protocol, in which nodes switch their
radio frequency at the start of each time slot. The frequency
selection is based on the current time slot index and a secret
channel offset shared by the two communicating nodes.
2.2 Limitations of Current Multi-Channel

Protocols
While the discussion in Section 2.1 suggests that chan-

nel diversity can improve performance, we argue that current
approaches lack the flexibility and the generality to support
diverse application requirements.

Lack of Architectural Consistency. Based on the expe-
rience from developing and deploying WSN applications,
an architecture for wireless sensor networks is starting to
emerge [2, 6, 10]. Nevertheless, there is no consensus as
to where channel switching belongs in the architecture and
how it interfaces with the rest of the protocol stack. Exist-
ing multi-channel protocols are mostly implemented at the
MAC level ([7, 17, 18]) or integrated to network layer proto-
cols ([8, 9, 13, 16]). In turn, this lack of agreement impedes
code reuse and protocol interoperability.

Restrictive Application Assumptions. Existing multi-
channel protocols generally assume simplistic application
behaviors —data collection with constant traffic rate being
the most common one. For example, Le et al. proposes a
multi-channel MAC protocol that is optimized for collection
and aggregation traffic patterns [7]. However, supporting
an expanding application landscape requires a multi-channel
framework that can support multiple traffic patterns and QoS
levels.

Monolithic Applications. After a decade of active devel-
opment, open-source implementations of many WSN proto-
cols are publicly available. This availability has enabled the

1The IEEE 802.15.4 standard specifies 16 non-overlapping
channels in the 2.4 GHz band.
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Figure 1. Proposed decomposition and interfaces of
multi-channel protocols.

development of applications that compose multiple network
protocols to implement their logic. For example, one could
combine a data collection protocol with a dissemination pro-
tocol to implement an environmental monitoring application
with dynamic retasking [12, 14]. However, as Choi et al.
pointed out, applications running multiple protocols can ex-
perience inter-protocol conflicts [1]. For example, two pro-
tocols running on the same node can independently decide to
switch to two different channels, leading to packet losses for
one of the protocols. Instead, multi-channel protocols should
support multiple concurrent upper-level protocols and auto-
matically resolve such conflicts (e.g., by switching between
the two channels).

3 A Multi-Channel Protocol Framework
Section 2 argues that we need a consistent way to inte-

grate frequency diversity to the WSN architecture. Doing so
requires addressing three challenges. First, we need to iden-
tify and group tightly coupled functions that multi-channel
protocols require into reusable components. Second, we
should structure and position these components in ways that
leverage the functionalities of existing architecture compo-
nents. Finally, define a minimum set of interfaces that can
be used to implement different network protocols and end-
to-end applications.

3.1 Architecture Overview
We propose to decompose multi-channel protocols into

a channel allocation (CA) component and a channel syn-
chronization (CS) component. The goal of the CA compo-
nent is to assign one or more channels to the network’s nodes
in a way that optimizes application-specific metrics such as
network throughput. The CS component controls when ra-
dios should switch to each of the CA-selected channels so
that nodes can communicate with each other. The CS com-
ponent should base these scheduling decisions on data deliv-
ery metrics such as latency and energy usage.

Contrary to existing work that implements multi-channel
protocols at either the network or the MAC layer, we propose
a cross-layer approach that positions the CA component at
the network layer and the CS component at the MAC layer.

We allow each network protocol to implement its own CA
component for two reasons. First, since different network



layer protocol have different sets of requirements, a com-
mon CA component would not be suitable for all use cases.
Second, because the CA component is part of the protocol it
has access to the protocol’s node state and information ex-
changed among protocol peers.

On the other hand, there is a single CS component per
MAC protocol that interacts with all CA components at the
network layer. This design has two advantages. As the single
point of entry for all radio control and I/O requests, the CS
component has the visibility on radio requests to resolve pos-
sible inter-protocol conflicts. In addition, the CS component
can leverage the MAC layer functionalities to deliver mes-
sages to next-hop neighbors. Such functionalities include
neighborhood state maintenance and link-level acknowledg-
ments.

The decomposition of multi-channel protocols to CA and
CS components is similar to the separation of routing and
forwarding planes in the Internet; the CA component and the
routing plane make network-wide decisions, while the CS
component, similar to the forwarding plane, implement the
mechanisms necessary to forward packets to the next hop.

Figure 1 illustrates the position of the proposed CA and
CS components in the WSN architecture. The section that
follows describes the interfaces these components expose
and use.
3.2 Component Interfaces

The MAC layer provides three basic services to upper lay-
ers: transmit a packet, receive a packet, and turn the radio
on and off. The CS component minimally extends this nar-
row interface to allow upper layers to leverage the benefits
of multiple radio channels. At the same time, the existence
of the CS component is transparent to legacy protocols that
are agnostic to the availability of multiple radio frequencies.

We divide the new CS interfaces to those that the CA com-
ponent uses (§3.2.1) and those that network layer protocols
can use to improve their performance (§3.2.2). We note that
while we use nesC to describe TinyOS-compliant interfaces,
they are not specific to TinyOS.
3.2.1 Interfaces for the CA Component
Channel Reservation. The ChannelReservation interface
offers two services. First, CA components can issue the
numChannels() command to retrieve the number of avail-
able radio channels. Second, the reserveChannel() com-
mand allows a CA component to reserve a channel on the
local node. Since the CS component intercepts all radio con-
trol requests, if a CA component attempts to switch to a pre-
viously reserved channel, the request will fail and return the
appropriate error code.

interface ChannelReservation {
command uint8_t numChannels();
command error_t reserveChannel(uint8_t channel);

}

Channel Utilization. The ChannelUtilMonitor interface
reports the utilization of a channel. Although the interface
leaves the definition of utilization open, common choices in-
clude the number of network-layer protocols that intend to
use a particular channel and the number of packets that have

been sent and received on a channel. The interface mandates
the getUtilization() command to return an integer be-
tween 0 and 255, corresponding to the lowest and the highest
utilization respectively.

interface ChannelUtilMonitor {
command uint8_t getUtilization(uint8_t channel);

}

3.2.2 Interfaces for Network Layer Protocols
Frequency Hopping Sequence. The CS component
switches the radio channel according to an internal sched-
ule to handle radio transmit/receive requests across different
channels. The FreqHoppingSeq interface allows protocols
at the network layer to query for the next time that the CS
component switches the radio to a particular channel. This
information can be useful for setting protocol timeout values,
especially since multiplexing a radio essentially reduces the
effective bandwidth for each protocol.

interface FreqHoppingSeq {
command uint32_t nextTime(uint8_t channel);

}

Timers. Existing multi-channel mechanisms generally fol-
low an eventual delivery service model due to the delay that
channel synchronization introduces. Moreover, they do not
provide upper layers the ability to express the urgency of
their packet transmission requests. For example, a time syn-
chronization protocol could indicate that its timing beacons
need urgent transmission.

To meet these requirements, the CS component introduces
the PacketTimers interface with commands that set per-
packet timing attributes. First, we borrow the urgent bit con-
cept from the SP architecture [10]. The urgent bit notifies
the CS component that a radio request should have a higher
priority and be processed before others. Second, we allow
upper layers to set service duration timers for their packet
transmissions. When one of these timers fires, the MAC
layer should discard the corresponding transmission request
and signal the proper return error code to the network layer.

interface PacketTimers {
command void setUrgentBit(message_t* pkt);
command void clrUrgentBit(message_t* pkt);
command void setServiceDuration(message_t* pkt,

uint32_t timeout);
command uint32_t getServiceDuration(message_t* pkt);

}

3.3 Protocol Composition Example
Next, we demonstrate how multi-channel protocols can

be developed using the interfaces proposed in the previous
sections. We do so through Typhoon, a network-wide dis-
semination protocol that uses a dedicated control channel to
initiate and negotiate the channels used for subsequent data
transfers [9].

During bootstrapping, the CA component uses the
ChannelReservation interface to reserve the dedicated
control channel and to query the total number of available
radio channels. Typhoon nodes then advertise a summary of



objects that they have. These advertisements allow nodes to
detect any stale objects within their local neighborhood and
initiate requests to retrieve new version of the objects.

To retrieve an object from neighbor x, node y initiates the
handshake by sending a request message over the common
control channel. Node x then queries its CA component to
get a new channel for the data transfer. The CA component
on node x can select a random channel, or a relatively free
channel by querying the ChannelUtilMonitor interface for
each channel’s utilization. Node x finishes the handshake
by responding to y with the new channel number. Finally,
both nodes call the MAC layer API (e.g., the CC2420Config
interface in TinyOS) to switch to the new channel for the
data transfer. The CS module intercepts these requests as
it exposes this interface (see Fig.1). After the data transfer
completes, x and y return to the control channel.

4 Prototype Implementation
We now describe ViR, a straw man implementation of the

channel synchronization component. While other implemen-
tations are possible, we use ViR to show how the proposed
architecture can support multiple concurrent network layer
protocols with different radio frequency usage patterns.

4.1 Basic Protocol
Being the channel synchronization component, ViR sits

above all MAC layer components and intercepts I/O and ra-
dio control requests (e.g., requests to switch channels) from
the network layer. The ViR uses this information to mul-
tiplex the physical radio across the different network layer
protocols.

ViR divides time into equal-length slots, with nodes oc-
cupying one of the active channels during each time slot. A
channel is active if at least one network layer protocol has
previously requested to switch to that channel. We note that
while all nodes use the same slot duration, they do not have
to synchronize their schedules.

When a node has no pending outgoing packets, it cycles
through all active channels in ascending order. Incoming
packets are immediately delivered to the intended protocol.
Nodes broadcast a CH SCHEDULE packet at the beginning
of each slot to help neighbors learn their channel schedule.
CH SCHEDULE packets carry timing offsets that indicate
the next time a node is scheduled to be on each of the active
channels.

One change is necessary to this basic scheme to han-
dle outgoing packets. Specifically, a node can deviate from
the predefined channel schedule in order to rendezvous and
transmit packets to a neighbor. The probability of this de-
viation depends on local node’s confidence that the intended
neighbor will be on the desired channel during the next time
slot. For instance, the age of the cached CH SCHEDULE
packets from a neighbor can influence this confidence. How-
ever, if a node x frequently deviates from its predefined
channel schedule, it becomes difficult for other nodes to
rendezvous with node x. For this reason, nodes stay on
their scheduled channel during the next slot with probabil-
ity p = 0.25. Nodes switch to one of the N channels with
pending outgoing packets with probability (1− p)/N.

CTP delivery rate (%) CTP avg. latency (ms)
CTP only 99.7 56.8
Without ViR 52.3 642.8
With ViR 95.4 979.2

Table 1. When running both CTP and Typhoon on a 3×3
mesh, ViR improves the CTP delivery rate to 95%. The
increase in CTP latency is due to ViR serving simultane-
ous Typhoon and CTP traffic.

After deciding the channel for the next time slot, ViR
switches the physical radio channel and then it repeatedly
sends any pending packets intended for the current chan-
nel one by one. Similar to the sender-initiated packet de-
livery approach, ViR stops transmitting a packet once the
intended receiver acknowledges its reception, or when the
packet exceeds its lifetime (the PacketTimers interface in
Section 3.2.2 can be used to assign packet transmission dead-
lines).

Optimizations are possible on top of this basic scheme.
If a node has pending packets for several neighbors, it can
attempt delivery using a round-robin schedule to avoid head
of line blocking by a node that is late switching to the current
channel. Furthermore, if a node knows when a neighbor will
enter the channel (e.g., from CH SCHEDULE messages) it
can postpone the transmission of packet(s) intended to that
neighbor.

4.2 Evaluation
The primary goal of the channel synchronization compo-

nent is to deliver packets from multiple network layer pro-
tocols with different radio frequency usage patterns. In this
section, we evaluate how well the ViR implementation of
the CS component meets this requirement. Specifically, we
explore a scenario in which CTP [3], the standard data col-
lection protocol in TinyOS, operates concurrently with Ty-
phoon, a multi-channel network dissemination protocol [9].

We implemented ViR in TinyOS 2.1 and used the
TOSSIM simulator to measure the protocols’ performance.
The evaluation results were collected with the default
TinyOS MAC without low-power listening (LPL). We modi-
fied TOSSIM to simulate a physical layer that supports mul-
tiple channels. We simulated a 3×3 node grid in which the
top left node acts as a base station. Each node is able to com-
municate with its immediate grid neighbors. All CTP nodes
generate one packet every second. In addition to being a CTP
sink, the base station initiates a network-wide dissemination
of a 50KB object using Typhoon.

Table 1 summarizes the experimental results. When both
protocols are active, ViR can approximately double CTP’s
delivery rate. We used the experiment’s traces to understand
the cause of this performance deterioration. We found that
Typhoon’s channel-switching behavior segmented the net-
work paths that CTP used to deliver packets to the root.
Note that if it is the CTP sender that switches to a different
channel, all the alternate parents that CTP previously main-
tains to improve data delivery will not help. ViR mitigates
this problem by exchanging frequency hopping sequences
among neighbors and scheduling transmissions when both
the sender and the intended receiver are on the desired chan-



nel. Since multiplexing the radio effectively reduces the
available bandwidth for each protocol, the end-to-end la-
tency of CTP packets should increase when both protocols
are active. The results from Table 1 validate this.

5 Discussion
So far we have described how the CS module can multi-

plex requests from one or more network layer protocols that
want to use multiple frequencies. At the same time, the CS
component can be used to virtualize the radio among all the
network protocols that run on the same mote. Specifically,
the CS component offers the following properties:

Traffic Isolation. Concurrent traffic flows can experience
collisions leading to energy waste and performance degra-
dation. Choi et al. [1] cited a case in which the bursty traf-
fic from Deluge [4] changed MintRoute’s perception on link
qualities [15]. Using the mechanisms proposed in this pa-
per, one can de-conflict traffic flows by placing them over
orthogonal channels.

Process Isolation. The CS component can track protocol-
specific radio states and ensure per-protocol consistency.
These states include the frequency channel, node address,
and radio power state. Furthermore, the CS component en-
sures that state conflicts among protocols will not cause fail-
ures.

Resource Management. The CS component manages the
physical radio using its knowledge of protocol-specific radio
states. For example, it can shut down the physical radio after
all consumers have indicated no further intention in using the
radio.
5.1 Support for Low-Power MACs

Duty-cycling a radio is desirable since it reduce idle lis-
tening and conserves energy. Integrating duty-cycling and
channel switching effectively multiplexes the radio in two
different dimensions: time and frequency. We outline a
method to achieve this integration.

We leverage the MAC Layer Architecture (MLA), a
component-based architecture for duty-cycling MAC lay-
ers [6]. Since there are similarities between the operations
of the CS component and duty-cycling MACs, the CS com-
ponent can reuse functionalities in the MLA. The MLA
defines three high-level components: ChannelPollerC,
SenderC, and ListenerC. ChannelPollerC maintains the
radio power state by both following the duty-cycling sched-
ule and sampling the radio channel for activity. SenderC and
ListenerC are concerned with one-hop packet delivery by
using link-level mechanisms such as preambles and retrans-
missions. As Figure 1 illustrates, we position the CS compo-
nent above ChannelPollerC so that minimum changes are
required to the MLA. In addition, the CS component can del-
egate one-hop packet delivery and radio power state control
to the MLA’s components.

However, two changes are necessary to the protocol de-
scribed in Section 4.1, for the CS component to work above
the MLA. Namely, the ViR slot size should be equal to one
duty cycle period and the ViR slots should be aligned with
the start of each duty cycle period. These requirements im-
ply that each ViR slot occupies one channel and one duty

cycle period. Since the CS component delegates the radio’s
on/off state to the duty-cycling MAC below, we add call-
back events to notify the CS component of the radio’s state
changes.
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