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Abstract—In this paper, we formulate the sensor scheduling
problem for multi-static active sonar sensor networks. We also
present algorithms that schedule both sources and receivers to
achieve desired duty cycles, while optimizing both the temporal
and spatial sensing coverage. Finally, we present simulation re-
sults, based on a simplified propagation model, that demonstrate
the performance of the presented sensor management algorithms.

I. I NTRODUCTION

This paper investigates the sensor management problem
in multi-static active sonar networks and presents resource
allocation algorithms that ensure coverage for target detection
while conserving energy.

Sonar sensor networks, including passive and active sonar,
have been deployed with some limited scope for providing
persistent underwater surveillance. The basic operating con-
cept of a multi-static sonar network is to proactively “ping”
from an acoustic source and correlate the echo returns across
multiple receivers in the field to detect, localize, and track
targets of interest. In order to provide necessary coverage
for the surveillance area and sufficient spatial diversity for
target localization, multiple receivers and acoustic sources are
deployed and distributed throughout the field. This redundancy
can also improve the reliability and extend the lifetime of the
sensor network.

When energy management is necessary to achieve the
required network lifetime, sensor management in multi-static
sonar networks presents a number of unique challenges that
have received little attention by the research community. First,
the activities of the network’s active sources need to be
properly scheduled to avoid potential inter-ping interference
while providing sufficient coverage. The coverage of an active
sonar source is determined by the multi-static geometry and
is characterized by a collection of Cassini ovals depending
on the locations of both the source and potential receivers.
Furthermore, the group of receivers which collaborate to detect
the target’s location is dictated by the pinging source and
its members are typically not within communication range of
each other. Hence, existing sensor coordination techniques that
exploit the proximity among passive sensors that all detect
the target do not apply in this scenario [2], [4]. Finally, the
coupling between the control of actives sources and the rele-

vant collaboration among multiple receivers result in an energy
management problem that is significantly more complex than
the problem in passive sensor networks.

We present an algorithm that both schedules the network’s
active sources and controls the receivers’ duty cycles. We
prove that the proposed algorithm extends the network’s
lifetime while at the same time provides sufficient coverage
for detection. The presented technique can be applied to sensor
management in other active sensor networks such as ultra-wide
band radar sensor networks [3].

II. SENSORMANAGEMENT PROBLEM

A. Basic assumptions

We assume that the network comprisesN sources,S =
{S1, . . . , SN}, and M receivers,R = {R1, . . . , RM}. Fur-
thermore, we assume that the objective of the network is
to provide surveillance for an area denoted byF ⊂ R

2.
Without loss of generality, we assume the sensor management
decisions are made at discrete points of time denoted by
t1, . . . , tk, tk+1, . . ..1 A sensor management decision at time
k, denoted byd(k), is defined by

d(k) = (s(k), r(k)) ,

wheres(k) ∈ S is the source selection2 at timek, andr(k) ⊂
R is the set of active receivers at timek.

We define a sensor schedule as a sequence of decisions over
time,

Π = {dΠ(1), dΠ(2), . . . , dΠ(k), . . .}.

The sensor management problem is to compute a sensor
schedule to meet the surveillance performance requirement
while taking into account energy efficiency. Note that a sensor
schedule defines the duty cycles for both the sources and
receivers, in that sources and receivers not scheduled at timek
can go to sleep or operate at a low-energy consumption state.
The decision at timek also determines the set of receivers in
which relevant information is available for collaborativesignal
processing.

1We will use timek to mean timetk throughout the paper.
2We assume in this paper that at most one source is engaged at any time

to avoid potential interference among sources.



B. Geometric coverage models for multi-static sonar

We assume that all sonar sensors are at the same depth
and consider the coverage geometry in two dimensions as a
simplifying approximation.

To describe the coverage geometry of the multi-static
sonar systems, we first consider a bi-static case where only
one source-receiver pair is present. LetXs = (xs, ys) and
Xr = (xr, yr) be the locations of the source and receiver,
respectively. If we assume thatr detects a potential target
when the received signal energy is above a certain threshold,
then the coverage of thes − r pair is characterized by the
interior of the so-called,equi-power surface. This equi-power
surface is the set of all target locations that lead to echoes
whose power at the receiver is above the desired threshold.

As in the case for bi-static radar systems [3], the equi-power
surface can be approximated by a Cassini oval withXs andXr

as the foci, assuming no energy loss at the target. A Cassini
oval is characterized by two parameters: the distance between
the two foci2a and the constant product of distances from the
foci to any point on the Cassini curve,b2:
[

(x − xs)
2 + (y − ys)

2
]

·
[

(x − xr)
2 + (y − yr)

2
]

= b4 (1)

where the parameterb can be derived based on a path-loss
model and a specific detection threshold.

Given this description, the approximate coverage area for a
source-receiver pair is the interior of the Cassini oval defined
above, minus a masking area within which the ambiguity
between the line-of-sight (LOS) signal and the echo from
the target cannot be resolved. This masking area can be
approximated by the interior of aequi-time-of-arrival surface,
which is an ellipse withXs andXr as its foci.

Extending to the multi-static case, the geometric coverage
of a source and a set of receivers can be approximated by
the union of bi-static coverages of all distinct source-receiver
pairs. For example, Figure 1 illustrates the coverage of a source
and its three nearby receivers, as the union of the three source-
receiver Cassini ovals.

We introduce the following notation for geometric coverage:

• Coverage of a source-receiver pair:C(S, R) ⊂ R
2;

• The coverage of a sourceS and a set of receiversR′ is
denoted byC(S,R′) and defined as

C(S,R′) =
⋃

R∈R′

C(S, R).

• Thefull coverage of a sourceC(S) is the overall coverage
provided by the sourceS when all the receivers inR are
active. In other words,C(S) = C(S,R);

• The coverage of a decisiond(k) = (s(k), r(k)), C(d(k))
is defined by the selected sources(k) and the set of
receiversr(k), that is,C(d(k)) = C(s(k), r(k)).

C. Optimization problems

The coverage metrics need to capture both the temporal and
spatial aspects of the coverage problem, as we do not expect
that any single source can provide complete coverage of the

field. Intuitively, we would like to avoid having any substantial
area not covered over a long period of time.

Given a compact regular area (e.g, a unit square)δA ⊂ F
and a sensor scheduleΠ, we define a discrete-time binary
coverage process forδA, xΠ

δA(k), k = 1, 2, . . ., by

xΠ
δA(k) =

{

1 if δA ⊂ C(d(k));

0 otherwise.
(2)

In other words,δA is covered at timek, if it lies within
C(d(k)) and is uncovered otherwise. The size of the areaδA
is a design parameter that depends on the target’s velocity,the
localization uncertainty, and the desired accuracy for tracking.

Based onxΠ
δA(k), we also define atemporal hole process,

hΠ
δA(k), which characterizes the lack of coverage:

hΠ
δA(1) = 0,

and fork > 1,

hΠ
δA(k) =

{

hδA(k − 1) + 1 if xΠ
δA(k − 1) = 0,

0 otherwise.
(3)

Note thathΠ
δA(k) is equal to the time elapsed from the last

decision that coveredδA, following the scheduleΠ. In the
sequel, we will drop the superscriptΠ for the two processes
defined above if their dependency on the schedule is clear
from the context.

Given a sensor scheduleΠ defined overk ∈ [1, T ], T ∈ N,
its coverage (or more exactly lack-of-coverage) forδA can be
characterized by the maximum duration over which the area
δA is not covered. If we assume that the fieldF is discretized
into NF (δA) of unit areasδA ⊂ F , then we can measure the
coverage across the field based on the average temporal hole
over any areaδA.

Specifically, we define the average temporal hole across the
field F at timek by

hΠ
F (k) =

1

NF (δA)

∑

δA⊂F

hΠ
δA(k) (4)

Then, the coverage metric we will consider can be written as

H(Π, [1, T ]) = max
k=1,...,T

{

hΠ
F (k)

}

. (5)

If the scheduleΠ is periodic, then the performance is measured
based onH(Π, [1, T ]) over one period and we will drop the
dependency on[1, T ].

One potential deficiency of the metric defined by (5) is that
it does not directly penalize large contiguous “spatial holes”
(versus a collection of smaller areas) if the unit areaδA is
too small. One possible approach to address this issue is to
work with a larger unit areaδA. However, doing so would
also require revising the definition of the coverage process
(2) to address the loss of resolution. For example, one should
consider an area covered, if the sensor decision covers some
percentage ofδA.



The optimization problem we will solve is the following:
Given a time horizon[1, T ], T ∈ N and a definition of the
unit areaδA,

min
Π={d(1),...,d(T )}

H(Π, [1, T ]). (6)

To ensure that the optimization problem defined in (6) is
non-trivial and well-posed, we make the following additional
assumptions:

A.1 No single source-receiver pair can provide full coverage
of the field. That is, for anyS ∈ S and anyR ∈ R,

F/C(S, R) 6= Ø.

A.2 The collection of the sources and receivers can provide
complete coverage of the field over time. That is,

F ⊂
⋃

S∈S

C(S).

III. SENSORSCHEDULING ALGORITHMS

We consider only deterministic schedules in this paper. If we
assume that all the sources and receivers are always available,
then it suffices to consider periodic sensor schedules. Our goal
is to develop algorithms that compute sensor schedules which
optimize the coverage metric defined in (5), while achieving
the desired sensor duty cycles (for both sources and receivers).
Simultaneous optimization of source and receiver schedules
will lead to a challenging combinatorial optimization problem
when the size of the network is large. For this reason, we
first consider the problem of source scheduling assuming full
duty cycles for the receivers. This scenario is relevant since
sources are expected to consume more energy than receivers.
To achieve a desired duty cycles for receivers, we present a
simple randomized algorithm to achieve desired duty cycle
taking into account the source schedule.

A. Source scheduling with duty cycle constraints

We assume that an upper bound on the duty cycles is
specified. Let us first restrict our attention to the periodic
schedules that engage each source exactly once over each
period. Hence the problem is to identify an ordering among
the sources such that the coverage provided by the schedule
following the ordering is optimized. Such a periodic schedule
leads to a1/N duty cycle for each source. A greedy algorithm
can be described as following:

• Find the sources(1) ∈ S with maximum full coverage.
That is,

s(1) = argmaxS∈S |C(S)|A,

where|X |A is the area of a compact setX ⊂ R
2.

• For k = 2, . . . , N , find s(k) ∈ S/{s(1), . . . , s(k−1)} to
minimize

NF (δA)hF (k + 1) =
∑

δA⊂F

hδA(k). (7)

Instead of the greedy approach taken in (7) where the direct
average is used for the sequential search, one might consider

a weighted average that places emphases on areas with larger
temporal holes. For example,

∑

δA∈F

w(hδA(k + 1))hδA(k + 1), (8)

wherew(·) is a non-negative increasing function.
The complexity of the problem increases for more general

duty cycle requirements. Given a periodic schedule with period
T , {(s(1), r(1)), . . . , (s(T ), r(T ))}, the duty cycle of a source
S ∈ S, denoted asµ(S), is defined by

µ(S) =
|{s(k) = S, k = 1, . . . , T}|

T
,

where| · | denotes the set cardinality. Optimization of coverage
with explicit requirement onµ(S) is challenging. We propose
an alternative representation of duty cycle requirements that
will lead to a more tractable optimization problem for source
scheduling. We assume: (1) a desired upper-boundU is
specified on the number of times a source is selected over
each cycle of a periodic schedule; and (2) every source has to
be scheduled at least once. Note that under these requirements
the duty cycle of sources satisfies the following inequalities:

1

N
≤ µ(S) ≤

U

N + U − 1
, (9)

for any S ∈ S. One can also generalize the formulation to
place different upper bounds for different sources if moti-
vated by the application. Under this alternative duty cycle
requirement, the algorithm presented above can be extended
to compute the source schedule by

• Keeping track of the number of times each source has
been selected to ensure no source is selected more than
U times; and

• Avoiding a source if it leads to a degradation in perfor-
mance as measured by (7) after it has been selected once.

We note an interesting property of the algorithm described
above: no source will be scheduled back to back because this
will always increase the size of the temporal holes.

B. Probabilistic receiver scheduling with receiver duty cycle
constraint

If no explicit effort is made to control the receiver duty
cycles, they are then dictated by the source schedule and
the coverage geometry. Given a specific sourceS ∈ S, it
is expected that only a subset of receivers provide useful
information for detection, denoted asR(S) ⊂ R. Hence a
source schedule would result in varying duty cycles for the
different receivers. However, this “passive” control of receiver
duty cycles might not meet the desired energy efficiency one
wishes to achieve. Next, we present a simple randomized
scheme to further control the receiver duty cycles.

Given a source schedule,ΠS = {s(1), . . . , s(T )}, we define
the uncontrolled duty cycle for each receiverR ∈ R as

µΠS (R) =
|{R ∈ R(s(k)), k = 1, . . . , T}|

T
. (10)
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Fig. 1. Random Topology: 26 sources (blue crosses) and 37 receivers (green
circles) are randomly distributed across the field,F , of size 85 m× 100 m.
The size ofδA is 5 m× 5 m.

In general,µΠS (R) varies for different receivers. Assume
that a desired maximum average receive duty cycle is
given as µ̄R > 0. Then given a source scheduleΠS =
{s(1), . . . , s(T )}, a simple randomized receiver scheduling
algorithm is described as follows: At timek,

• For R ∈ R(s(k)), scheduleR with probability

µ̄R

max{µ̄R, µΠS (R)}
.

Since coverage is not taken into account in the receiver
scheduling algorithm described above, we shall a degradation
in coverage if a low receiver duty cycle is desired.

IV. PERFORMANCEEVALUATION

A. Methodology

We developed a Python simulator to evaluate the efficiency
of the proposed scheduling algorithm. For simplicity, we
represent the surveillance area as anN m × M m grid, with
a unit square(δA) of size k × k m (k = 5). In order to
calculate the coverageC(S, R) of a source-receiver pair, we
consider that if any part of the unit square is covered by the
pair’s Cassini oval, then that whole unit square is covered.We
use the same approach to calculate the full coverage of source
C(S).

We determine the size of the Cassini oval using a simple
path loss model and a corresponding detection threshold.
Specifically, we first define a threshold value for the received
signal strength. If the received signal strength is below this
threshold the receiver will not detect the target. We then use
the log-distance path loss model, with exponentγ = 2, to
calculate the signal strength at distanced from the source and
from that the parameterb2 of the Cassini oval that ensures
detection at the receiver given the detection threshold.

Alternative strategies.We compare the proposed scheduling
algorithm against two other strategies:random with replace-
ment (RwR) and random without replacement (RnoR). The

Greedy RnoR RwR
µ(σ) µ(σ) µ(σ)

Uniform Topology 4.94(0.22) 6.20(0.85) 9.01(1.52)
Random Topology 5.44(0.48) 7.06(0.91) 9.91(1.76)

TABLE I
MEAN AND STANDARD DEVIATION ON AVERAGE TEMPORAL HOLE SIZE IN

THE UNIFORM AND RANDOM TOPOLOGY

RwR strategy selects sources(k) randomly fromS, while the
RnoR strategy selects a random source among those that have
not been selected during the current cycle. As a result, the last
strategy will achieve a1/N duty cycles for all the sources inS.
Finally, we use a linear weight factor for the proposed greedy
algorithm (cf. (8)) and therefore refer to it as thelinear greedy
algorithm.

Performance metrics. We use two metrics to compare the
three alternative strategies described above: average temporal
hole size and duty cycle. The first metric captures the fitnessof
every decisiond(k) in reducing coverage holes, while the duty
cycle reflects how well the algorithm minimizes the utilization
level of the different sources and receivers.

B. Effect of topology

We start with a topology in which 20 sources and 25
receivers are uniformly distributed across a 100 m× 85 m
grid. We also use a random topology that better reflects real
deployment scenarios. Figure 1 shows one such topology in
which 26 sources and 37 receivers are randomly placed over
the same grid. In both cases we setU = 3.

As Table I indicates, the greedy algorithm provides better
performance in terms of average temporal hole size across
both topologies. This is because it chooses the source that
minimizes the temporal holes at every decision stepd(k), as
long as theU bound is observed. While Table I presents the
overall performance of the three algorithms, Figure 2 shows
the average temporal hole size as a function of time for the
random topology. It is evident from this figure that a few
holes are not covered for long time periods. The reason is
that, contrary to uniform topology, there are some parts of the
grid that are covered only by a few (or even one) sources. In
this case, the temporal hole keeps increasing until that source
is rescheduled (see Figure 3).

The results so far show that the greedy algorithm reduces
the duration of coverage holes in the area that the sensor
network covers. Next, we look at the source utilization across
the three different algorithms. As Table II shows, the greedy
algorithm also achieves the lowest average source duty cycle
for both topologies. Moreover the standard deviation is small,
suggesting that the different sources are equally utilized.
However, the standard deviation increases for the random
topology. This increase is due to the fact that, unlike the
uniform topology where different sources have approximately
the same coverage, some of the sources in the random topology
have significantly larger coverage. Moreover, some areas can
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Fig. 2. Average temporal hole size for random topology with 26 sources
and 37 receivers. The source selection upper boundU = 3.

Fig. 3. Maximum hole size for the uniform and random topologies. Large
values suggest that a unit square remained uncovered for a long time period.

only be covered by certain sources. Due to these facts, the
greedy algorithm will utilize some sources multiple (up toU )
times, leading to longer cycles and larger imbalances.

C. Effect of U

Intuitively, varying U should affect the average temporal
hole size and duty cycle. Specifically, asU increases, the av-
erage temporal hole size will decrease, as the greedy algorithm
can repeatedly utilize the appropriate sources within the same
cycle. Doing so however will also increase the disparity in
source utilization, as we argued above. Indeed, Table III, which
shows how average temporal hole size and duty cycle change
as a function ofU , validates this intuition.

D. Probabilistic receiver scheduling

Invoking the same sources multiple times also increases the
duty cycle of the receivers associated with those sources. Fig-
ure 4, which plots the receiver activation PDF for the random

Greedy RnoR RwR
µ̄(S) µ̄(S) µ̄(S)

Uniform Topology 0.049(0.004) 0.05(0.00) 0.049(0.003)
Random Topology 0.038(0.008) 0.038(0.00) 0.039(0.009)

TABLE II
MEAN AND STANDARD DEVIATION OF SOURCE DUTY CYCLES FOR THE

UNIFORM AND RANDOM TOPOLOGIES.

U 1 2 3
Temporal hole 5.66(0.61) 5.60(0.50) 5.60(0.49)
size (µ(σ))
Duty Cycle (µ(σ)) 0.038(0.0) 0.038(0.01) 0.038(0.01)

TABLE III
EFFECT OFU ON AVERAGE TEMPORAL HOLE SIZE AND SOURCE DUTY

CYCLE.

topology, quantifies the extent of this effect. It is apparent that
in this case some receivers are used much more frequently than
others (up to three times), leading to radically different receiver
lifetimes. Thereby, one is interested in bounding the number
of times that receivers will be utilized in a cycle, to ensure
a minimum lifetime for all the network’s receivers. However,
setting a hard bound on the number of times a receiver can be
used during a cycle can lead to inefficiencies. This is because
the coverage of sources scheduled at the end of the cycle might
be diminished due to the reduced number of feasible receivers.
Instead, the probabilistic method described in Section III-B
introduces a “soft” bound on receiver utilization.

Figure 5 compares this probabilistic method to a strict upper
bound on receiver utilization. In both cases, we set the receiver
upper bound to 5. The average temporal hole size for the
probabilistic method isµ = 5.94, compared toµ = 6.28
for the strict method andµ = 5.66 when no bounds are set.
Finally, Figure 6 plots the duty cycle for all the receivers in
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Fig. 4. PDF of the number of times a receiver is activated during a source
activation cycle in the random topology.
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Fig. 6. Achieved receiver duty cycle for the probabilistic method in the
random topology. Also shown is the ideal maximum duty cycleµ̄R = 0.135,
when the receiver bound is set to 5.

the random topology. It is evident that the probabilistic method
reduces the duty cycle of the most heavily used receivers.

V. SUMMARY

We formulate the problem of sensor scheduling in multi-
static active sonar sensor networks and present algorithmsthat
schedule both sources and receivers. The proposed algorithms
achieve the desired duty cycles, while optimizing both the
temporal and spatial coverage necessary for target detection.
Even tough the simulation results shown above use a geometric
coverage model derived from a simplified propagation model,
the proposed approach is inherently geometry independent and
can be applied to the scheduling of active sensors using more
general (and possibly irregular) coverage models.
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