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Abstract—Mobility can be exploited to spread malware among nomadic users traversing a collection of network acces#goi
wireless nodes. In this paper, we present an analytical motiéor ~ The accuracy of the model is validated through simulations
estimating the evolution of infections spanning multiple etwork driven by realistic mobility models, drawn from university
domains that host mobile nodes. We validate the accuracy of . ' .
the proposed model by comparing its predictions to simulatins wide traces{ at Dartmouth College [8]. We found that in
driven by realistic mobility patterns. Our results show that Nnetworks with thousands of users and hundreds of APs the
such a mobile infection requires less than a day to infect the infection can reach 65% of the total population within onheo
majority of a mobile population with thousands of wireless rodes  day, a relatively short time considering that infectionkoie
spanning hundreds of network domains. Moreover, if mobile the slow pace of node movements across network domains
nodes are allowed to infect nodes within the same domain . . . '
that are connected to the wired network, then an even smaller Furthermore, if mobile nOd.eS are allowed to 'nfeCF Co'ledat_
number of mobile nodes can inflict comparable damage in simir  hodes connected to the wired network, a scenario modelling
time frames. Unfortunately, these infections generate ndigible imperfect DMZs, we observed that even a small proportion
activity at global malware monitoring stations (e.g., network of vulnerable mobile nodes can propagate the infectionéo th
telescopes and honeypots), which contributes to their stiéhiness. majority of the network domains within a single day.

By observing the infection’s spatial evolution we show that Due to the hiah ti d of th h
popular domains are infected during the early stages of the ue to the Ig. propagation spee. oft e;e worms, human
infection. This observation is likely to be useful in desigmg defense mechanisms are rendered implausible. Moreower, th
countermeasures against mobile infections. By placing mators  threat from this class of infections stems from the fact that
in approximately 10% of the most visited domains, we can det#  mobile nodes trivially bypass existing perimeter defensash
the mobile worm before it reaches a majority of the populatio. 55 firewalls. Since cross-domain transfer of the infecti®n |
Finally, we elucidate why simply placing telescopes in justhe - - . . .
popular domains is not sufficient for early detection. fac?om_pl_'ShEd by the .phyS|caI migration of infected .nOdes’
it is difficult to contain them, when no controls exist to
l. INTRODUCTION police the movement of nodes across domains. Such gaps
Mobility pervades networked devices today. For exampl#y network defenses can lead to global worm outbreaks.
millions of users access the Internet through laptops anisPDFinally, the detection of these worms is challenging due to
equipped with WiFi cards connected to thousands of Accetbeir stealthiness. This characteristic is a consequehtieeo
Points (APs) located on campuses, coffee shops, airpacts, éact that the majority of current detection techniqueseseli
This increase in connectivity however comes at a high priceon traffic anomalies measured at network moniterstyork
failure to secure these communication channels providesva rielescoped14]). Unfortunately since mobile infections scan
propagation vector for spreading malware.(self-replicating within the domains of infected nodes, suspicious probes on
malicious code such as worms and viruses). As a mattertefescopes deployed at remote domains would be absent. This
fact, the exploitation of these channels is not just our glzec observation motivates the need for developing novel mawar
tion: variants of the Zotob/Mytob worm are suspected to haeentainment technologies. One promising direction toward
used physical movement of computers across network dom#iis goal involves exploiting the spatial characteristaésghe
boundaries as a propagation strategy [23]. More recentlyjrdection. Specifically, we observed that by placing morsto
series of malware that attempt to exploit Bluetooth conipast in approximately 10% of the most visited domains, we can
as an infection mechanism were reported in the media [2]. THetect the mobile worm before it reaches the majority of the
accepted practice to protect from such worms today is teeplagopulation. While this seems a straightforward solutiothi
mobile nodes in a de-militarized zone (DMZ), separate froearly detection problem, we argue that monitor placement is
the rest of the network. In such a scenario, all communinatistill a challenging problem with many intricacies.
between the mobile nodes and the wired nodes passes throughhe structure of rest of the paper is as follows: In the next
a firewall. However, mobile nodes can still infect each otheection we present previous models for malware and mobility
through contacts within these de-militarized zones. patterns. Section Ill introduces the model for predictihg t
Unfortunately, modelling efforts have not followed the pacspread of infections among populations of mobile users. We
of malware evolution as most previous work describes havompare the model’s predictions to simulation resultsedriv
infections spread over wired networks. To better undedstahy realistic mobility traces in Section IV where we also
this impending threat, we develop a concise analytical hodevestigate a number of variants of this worm. In Section V
that predicts the speed of infections over populations wfe compare the mobile worm to a 'traditional'g. globally



scanning) worm and provide intuition about the temporal 1. WORM MODEL
evolution of the infection by connecting it to the structure . . . . ,
o . . . X We model infections spreading over collections of mobile
of the mobility graph in Section VI. Finally, we discuss the .
issues involved with telescope placement in Section VIl ang. > who connect to the Internet through a revolving set of
. . . Pe p L network access points. This model consists of two types of
close in Section VIII with future research directions. o . )
entities: (a) network domains through which users connect to
the Internet andb) mobile nodese.g.laptops and PDAs, that

are susceptible to infections and move across these domains

A large volume of research has focused on modelliH& this context, domains act as mixing regions in which mebil

Internet worms. Among these, the classic homogeneous worr‘HFjes can reach each other. We assume that an infected mobile
model assumed all-to-all node connectivity and that evasy s node can infect another susceptible mobile node if theyleesi

ceptible node was a target of equal probability [10]. More rd" the same domain, even for a short period of time. This
cent models accounted for non-uniform scanning stratégjes is a realistic assumption pecguse an infected mobllg node
as well as for the fact that node population is not uniforml§@n €avesdrop on communications from all the other wireless
distributed over the IP address space [15]. However, much¥§tdes in the same domain and attempt to infect them directly.
the prior work (6], [18], [20] among many others), primaril The evc_>|ut|_on of an infection can be modelled as a discrete
considers how malware propagates in wired networks. Idste§Me, replication process over the sétof vulnerable nodes.
we explore how mobility can facilitate the spread of infent e denote the probability that nodes infected at time step
among groups of nomadic users traversing different netwdrY Pi.i- Furthermore, lets;; be the probability that node
attachment points such as WiFi Access Points. In this cat@tacts nodg. Given these conditions, nodes not infected
unlike previous scenarios, each infected node has a tinfé-ime step iff it was not infected by time step—1 and no

varying infection transmission probability depending ds i infected r_lodes in the domain it resides contacte_zd natlging
local scope. the last time step. Because these events are independent, th

In the context of mobile networks, Andersen al. derived probability can be expressed as:
the speed of mobile worms through simulations [3]. While our
results seem to be in broad agreement, we focus our attention l—pis = (1—pis )H(l — Byipiit)
on the actual infection evolution, so as to infer the worm Pit Pit—1 jibat-1
characteristics. Similar trace-driven studies coveririgdtions
over Bluetooth networks were performed by 8ual. [19]. L=pip = 1=pit-1— Zﬁjipj,tfl
Unlike those previous studies, which are limited to siniolz J
performed using a particular trace, we propose a generalere, we use the approximatiéh —a)(1 —b) ~1—a —b
analytical model that predicts the evolution of infecti@ver a \yhenq « 1, b < 1. Thus we have,
wide range of mobility patterns. Epidemic spreading in ad-h
networks has been studied by Mickens and Noble in [13]. That
work explained why traditional epidemic models fail in the
case of mobile networks and proposed a new framework for
such networks. While that study focused on worms spreadingBy representing 7 ¢,p2+,...) as a row vector?; and
within a single ad-hoc wireless network, our model explairgssignings;; = 1 (i.e., the probability that a nodé contacts
how infections are carried across a variety of networks ley tltself is trivially one), we can rewrite Equation (1) in a mat
physical movement of mobile users. form as:

The mobility model we use is similar to the semi-Markov
model presented in [12]. Leet al. developed a cumulative P,=P_ 1M 2
model for different user groups to obtain the AP-user mupili
patterns. Instead, we model the mobility patterns of irtliei Where M/=[3;;] is the system matrix, containing the pairwise
users. We choose to do so, because the derived mobility mogfentact probabilities. From the definition d@t, p;. is the
is then used to calculate the contact rates between molill@bability that nodei is infected at timet. Therefore, the
node pairs. As we will later show, this is the key factopxpected number of infected nodes after titris given by
that determines the rate at which the infection travels amon
individual nodes.

Today, it is generally considered good practice to place E[lll} - Zp“ =Pk ®)
mobile nodes in a DMZ separated from wired nodes. Various =l
enterprise solutions exist for doing se.g. Cisco’s network where! is the set of all infected nodes. This type of matrix
admission control [1]. We believe that these perimeter desultiplication view of an infection is common in epidemic
fenses by themselves are insufficient and a more fine-grainmeddelling €.g.[20]).
approach is needed to detect and contain mobile worms. WaMNe initiate the infection by infecting a single node, Jay
present an outline of such defenses in Sections VI and VIIThe initial conditions are then as follows:

II. RELATED WORK

J#i

Dit = Pit—1+ Z BjiPjt—1 (1)

J
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The last complication is that Equation (2) proceeds on
1 ifi=k, discrete time steps of uniform duration, while nodes attual
Pio = 0 Otherwise have variable domain staying times. We address this discrep
) o ] . ancy by using the mean residence time across all domains
If multiple nodes are |_n|t|a_1lly_|nfected (also known.aspam as the discrete time step in Equation (2). While doing so
zeros), the corresponding indices fiy are set to unity. compromises the accuracy of the analytical model, as the
A. Mobility Model simulation results from Section IV demonstrate, even with
It is evident that in order to estimate the expected numbttglrIS c_om’prom|se. the model is able to accurately track the
. . . Infection’s evolution.
of infected nodes in Equation (3) we need to calculate the
contact probabilitiess;;. In turn, these probabilities depend IV. EVALUATION

on the number of domains a node visits and the duration of . . .
time that th d ides | hd i We theref We derive the parameters of the mobility model described
ime that the Noce resides In each domain. We theretore neelﬂ %he previous section from traces of actual mobile user

mobility model that describes the movement of mobile nOd%%haviors, available from Dartmouth college [8]. Each drac

acwzsggégfiﬁ:m%ﬁ' attern of individual nodes usin is a time sequence of the access points the mobile users visit
-Markov chai V{/I yr? th individu | . Itj/l ! K identified by their MAC addresses). Traces also contain the
semi-Vlarkov chains. YWe chose the more general semi-MarkQo ) -opp: location, signifying a user’s departure freime
model because it was shown that node residence times 9 : : .
not follow the exoonential distribution 151. [11]. but aretber network. The trace we use contains 626 different accessgpoin
P [51, [11], and tracks the movement of mobile users from 9/23/2003 to

mlodelled by fr;ﬁa\?]/'ta”ed d|str|but|0n_s|.v|Thke star:e_spﬁl:he 12/10/2003. Approximately 6% of the users in our trace &it
{f’ ” ’:n} Ok q € Qmoglj_(:]netous ;t(?ml- at;};(\j/ ¢ a.'tr:. 'S the Sflist a single domain before entering the “OFF” state. We re-
orafl network domains. the fransition ma eseribing e " 5ved such users, since states in their semi-Markov chain ar

\C/Qgtlgrlsvcﬂs:rr]l a?:e: trﬁemne:g;(r; \;Verg:g elr)1 c=e ['[Cilﬁielso?ntr:ré T]; de not recurrent and their steady state probabilities in statker
' 9 #fan the “OFF” state are trivially zero. In all, we had 6101

each domain. 1f|sers. We assume that all the mobile users in the system are

d.;\ﬁ) Cf:n Ehin (sjglm'/r? tthhee ?é?lidY;]Stastgt tg?rés't'g?oﬁrsbab"%Inerable. We observed similar infection curves when anly
Istribution by solving wing quations: fraction of the mobile users were vulnerable. Furthermtire,
infection model can easily incorporate scenarios in whialy o

F=aP a subset of the mobile nodes are vulnerable by appropriately
L defining the set of vulnerable nodeg,. The mean domain
Zﬂi =1 residence time of the users is approximately 67 minutes. We
i=1

use this value as the discrete time step in Equation (2).
Given the fraction of timer that the user stays in each state ) ) )
and the mean residence timésfor each state, it is easy to”- Mobile node infection
calculate the steady-state probability of the user staying in ~ We compare the model’s predictions with results provided

domainj: by detailed simulations. The custom simulator we developed
. emulates the movements of mobile users over the same collec-

™= n‘fﬂi_ _ (4) tion of APs and tracks the evolution of the infection after an

ZFl d;m; initial node (Patient zero) is infected. As before, we assum

From Equation (4) we can subsequently compute the contg?:ﬁ tr;ﬁ |tnfect_|c<13n pastshes from ant\lzfelc(:te? t?]Ode to a?y otr:/(\e/r
rate 3,, between nodes andy. This value is equal to the node that resides in the same network at the same time. Ve

probability that bothz andy are in the same domain at somda@n 100 simulations, each time randomly choosing a differen

point in time. Without loss of generality, we say that WhelLr"t"'_’II hode to infect. . . . .
a node is in the “OFF” statei.¢. it is not operational) then Figure 1 graphs the evolution of the infection as a function

it resides in the domain with index 1. Since, the infectioﬂf tim_e. In addition to the infection curve predi_cted_py the
does not propagate when nodes are not connected, wedjglytical model, we present three hrepresen}'ganve smpulat
not include the percentage of time in the “OFF” state in tH&!ns- These curves represent the, 50", and 95" percentiles

calculation of the contact rates. The contact rates are tH&d9SS all simulations, where rank is calc_ulated based_ en th
given by: time when 70% of vulnerable hosts are infected. Intuitively

these curves represent a slow, average, and fast infection
m instance depending on which node was infected first.
Bay = Zﬁfﬂg (5) First, we note that the model provides a decent approxi-
=2 mation of the average infection evolution, faithfully tkawg
wherer? is the percentage of the time spentbyn domain the curves that represent the simulations. Furthermoee, th
1. We substitute Equation (5) into Equation (2) to obtain thiefection spreads to approximately 60% of the users within a
number of infectees as a function of time. single day. Given that the worm requires under a day to infect



0.8 T T T T T T worms). Even with a scan rate of 10 scans/sec and domains
o7 | with as few as 10% vulnerable nodes, one static node on the
' average is infected within the first second from the entry of
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the majority of the population, we experimented by starting
the infection at different days during the period coveredhsy 06 L
network trace. In all cases we observed patterns very simil&
to those in Figure 1. We also found that the evolution speeé 0.5
varied depending on the time of day when the first nodé

was infected. Worms that started during the daytime sprea&i 04T
faster than those started at night. This is due to the demtieas® o3|
movement of nodes during the night hours. §

I 02¢f
B. Mixing mobile and static nodes { ,

0.1F / Sim 5%
So far we have assumed that mobile users cannot infect G R

nodes connected to the static (wired) network, This model ~ 0 === o 20 20 0 i -

corresponds to current security practices according tahvhi
WiFi APs are separated from the rest of the netwoglg(
a company’s intranet) by firewalls. However, firewalls are
complex devices that are notoriously difficult to configurerig. 2. (a)Rate of domain infections as a function of timehwie total
Therefore, it is possible that a misconfigured firewall would mobile population (b) Rate of infection with only 25% of thehbile
allow infected wireless devices to contact hosts residimg i nodes
the static part of the network. More commonly, laptops can
connect directly to the static portion of the network aftesyt Figure 2.(a) presents the number métwork domainsn-
have roamed across several wireless domaéng. {uring a fected as a function of time when mobile nodes can infect
business trip) effectively bypassing the barrier betwess tthe domains they visit. The infection spreads to about 65%
static and mobile compartments of a network domain. of the domains within a day. It then slows down considerably
In this scenario, static hosts can be infected by mobind takes a long time to infect the remaining domains. This
nodes and subsequently carry the infection to other vubheraresult might seem straightforward, given that 65% of mobile
nodes. Therefore, it is no longer necessary for mobile ntmlesnodes contract the infection within one day. In order to
simultaneously reside in the same domain for the infection investigate the relationship between the number of mobile
spread; a mobile node entering a network domain can contraodes carrying the infection and its spread over the set of
the infection by infected static nodes in that domain. Ineord network domains, we repeated the previous experiment, with
to understand how these infections spread, we modified thgandomly selected subset of 1500 wireless nodes (25% of
original simulator to assume the worst case scenario, Wherée original population). The surprising result, as FigRr)
an infected mobile node instantly infects any domain that iitdicates, is that infection rates in this case are comparab
enters. The “instant infection” assumption is valid evendo to the previous case.e. the infection reaches 60% of the
uniform scanning wormife. which follows a naive strategy domains within a day. This result indicates that the wornedpe
of random scanning and therefore one of the slower spreadiagot significantly hampered by the significantly smallédrafe

time(hours)



cross-domain carriers. This phenomenon can be explained byn the other hand, since mobile worms scan only their local
the association graph usually observed in social netwd@ks [network, detection time is governed by the speed with which
In that context, as well as in the context of network domainsfected mobile nodes enter the domain where the telescope
visited by mobile hosts, domain popularity has been shovis; located. Considering the same (randomly placed) single
to follow a heavy tailed distribution, whereas a small numbéelescope, detection will occur when the worm has spread to
of domains are extremely popular followed by a large numbgalf of the domains on the average. Figure 2 provides the time
of less popular domains. As a result, the smaller subset fof the worm to spread to 50% of the vulnerable domains
nodes is still likely to frequent at the very popular domainas ~ 15 hours. Within this time, the worm infection has
thus fuelling the growth of the infection. already taken off, infecting a large number of hosts. Onee th
worm enters the domain which contains the network monitor,
detection is much faster. On the other hand, since detection
Thus far we have shown that a mobile infection can takgne is dominated by the time necessary for the worm to enter
up to a day to affect a significant portion of the vulnerablghe domain, using larger telescopes within a domain does not
population. Although this is fast enough to make humagignificantly reduce detection speed.
defense mechanisms implausible, it is considerably slowerin short, unlike traditional uniform-scanning worms, tele
compared even to the naive uniform scanning strategy, 08 mgcope size is not important and random placement is of little
sophisticated variants such as flash worms that can spread @se. On the other hand, given that the worm first infects
the entire Internet in a few minutes [17]. popular domains first, it is prudent to place worm monitors
The fact that such worms spread more slowly might lead t® those domains.
the conclusion that they amasierto contain. This, however,
is false. On the contrary, mobile infections are more difficu VI. SPATIAL EVOLUTION
to detect using conventional approaches, such as distdbut Until now we have investigated the temporal behavior of
network monitors [4], [15]. In the paragraphs that followe wthe infection. However, an equally interesting aspect & th
explain the underlying reason for this negative result. infection’s spatial evolution, that is how the infectiorrepds
over the collection of network domains the mobile nodeg.visi
We note that Figures 1 and 2 flatten out considerably after
We compare the expected time to detect a mobile infectighy aimost vertical growth during the middle phase of the
to the average detection time of a uniform scanning worrayolution graph. This behavioral change can be explained by
Here we assume that a single network telescopes is usedjiiading the spatial evolution of the infection into a numioé
detect the infection. We define detection time as the timgstinct phases. The infection initially “moves” in the elition
elapsed from the first infection until the first probe arrivegt gomains which are extremely popular, since many nodes
to the address space monitored by the telescope(s). SUPPQE® them. This is the slow take-off phase. These popular
that the telescope covers a large fraction= 0.5, of the IP  gomains (we call thenhubg are closely connected by the
space used in the network domain where it is deployed. Thefigup of mobile nodes which frequent them, thus forming a
the expected timé&’ to detect the first instance of the infectiorjense coreof the network graph. When the infection reaches

V. DETECTION

A. Detection Speed

for a uniform scanning worm is given by: this core, an exponential increase in the number of infected
hosts occurs, as the majority of vulnerable nodes frequentl
H(T) = foT I(t) - s dt y|S|t the core. Finally, the infection gradually slows dowit?er .
T o it has consumed the core and extends towards domains with
~ fo et s dt low contact ratesife. unpopular domains). Figure 3 illustrates
= % this phenomenon where it is clear that popular domains are
- T — # ln(NT-f 1) (6) infected within the first few hours of the infection.

where H () is the number of IP addresses scanned by all the Popularity

infected nodes if0, t], s is the scan rate)y is the total number ~ We define the popularity of a domain as the cumulative

of domains, and is the average density of vulnerable nodesiumber of node-hours that nodes spend in that domain. This
Substituting conservative values fer= 20 scans/min (the definition accounts for both the distinct number of nodes

Witty worm had a scan rate of roughly 1200 scans/min [22]yisiting the domain as well as the length of time a node reside

N = 1000, andf = 0.01 in Equation (6) we find that ain the domain.

uniform worm will be detected within 15 minutes on the Intuitively, placing network monitors in the most popular

average. By this time the worm has spread to less than Zkmains yields the earliest detection times. To quantéti

of the vulnerable population (calculated from the equatianeasure the effect of placing multiple monitors, we placed

for the uniform scanning worm). Furthermore, the placementonitors in the topxz% of the domains and measured the

of the telescope is immaterial to the detection time. Thudetection times. As Figure 4 shows installing monitors in

we conclude that such a telescope can be an effective edp6 of the domains reduced the detection time to about 10

warning device for typical worms. hours. During this time the worm has spread to less than
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A. Popularity is dynamic

First, we investigate how domain popularities change over
time and the effect these changes have on detection time.
For this purpose we use the access points from the previous
dataset [8] to calculate the popularity of each domain on a
weekly basis. We then choose an initial set of the 50 most
popular APs £10% of the total AP population) during the first
week of the network trace and measure how this set compares
with the set of top 50 APs for every other week. The similarity
between the first and every other weekly set is estimated by
calculating the dot product between the two sets and digidin
the result by 50. In this case a product of one indicates that
the sets are identical, while zero indicates that no common
members exist between the two sets.

Figure 5.(a) plots how the similarity between the top 50
APs evolved during year 2004. It is evident that there are

g. 3. The first time an infected node is seen at a network doraa wide variations with two prominent dips around weeks 30 and
a function of the domain’s popularity, defined as the numbfer
cumulative node-hours occupancy of a domain.

%0. Closer inspection of the CRAWDAD dataset revealed that
during the Fall and Spring sessions, the APs in the resienti
buildings were the most popular. On the other hand, APs in
the academic buildings and athletic centers were highligadn
during inter sessions, explaining the aforementioned ghsn
Figure 5.(b) shows the corresponding median worm detection
time over time, when monitors are statically placed in the
top 50 domains according to the popularity results of the firs
week. While it may seem that the difference in the detection
time is only a matter of two hours, varying between 10.5
and 12.5 hours, the effects of this difference are dramAsc.
Figure 1 indicates, this disparity results in a infectiomesul

of <5% in the case of 10.5 hours, as opposed-8D% when

the detection time is 12.5 hours. Thus, reducing the detecti
time window is crucial to providing sufficient time if the war
defenses are to be effective.

B. Evasive worms

The second reason why static placement of monitors is
insufficient, is that worms can potentially detect theirganece
and avoid the networks in which these monitors are deployed.
Rajabet al. have presented an efficieptobe-response attack
that can be used to discover the locations of network manitor
deployed on the (wired) Internet [16]. A similar technique

10% of the hosts (as seen from Figure 1). Installing additioncould potentially be applied in the context of mobile infens.
monitors provides only marginal benefits, reducing in thatli In this case, worm instances probe the domain they currently

the detection time to a little over 9 hours.

VIl. DISCUSSION

reside, using standard network tools such as ping and ARPs,
or even passively eavesdrop all ongoing communications to
the AP. If a domain is believed to host a monitor the worm
will not attempt to infect any mobile nodes in that domain,
thus avoiding detection.

Deploying wireless network monitors may involve modi- On the other hand, if avoiding popular domains, in which
fying APs to scan through packets they forward looking fanonitors are deployed, slows down the infection to the point
traces of malware or deploying honeypots acting as decoyghere human intervention is practical, then the threat goose
As we showed, placing such monitors in the top 10% of tifeom theseevasiveinfections is minimal. To verify whether
domains can help detect the worm early enough. However, thigs is true, we simulated such an evasive worm that does
strategy in itself is not sufficient to guarantee early didec not try to infect the 50 most popular domains, and measured
We present two arguments to support this claim.

its infection speed. Unfortunately, as Figure 6 indicates,
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infection rate is still significant, with 60% of the hostsented
within 3 days on the average.

strategy for their placement is part of our future work.

VIIl. SUMMARY AND FUTURE DIRECTIONS
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. 6. Worm evolution when the worm is inactive in the top Sfivdhins.

straightforward. Numerous practical concerns for comteint
mechanisms designed for mobile infections must be addiesse
including how to exploit topological information to limihé
damage from potentially infected nodes, how to approgdyiate
apply the notion of hard-LANs [21] in this setting, and how
to track (in a tamper-resistant manner) the movement of siode
across network domains.
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(1]

From the two arguments presented above it is clear th#ll
placing monitors in the most popular domains is not a com;,
plete solution to the problem of early detection. The actu

[4]

We presented and validated an analytical model that de-
scribes the evolution of worms that exploit node mobility to

propagate. We evaluated infection speeds in differentaseen (5

ios: first, when mobile users can only infect each other ag the

move across a collection of network domains and second when
infections can spread from mobile users to static nodes. O
ultimate goal is to use this model to design effective détact

and containment mechanisms for this novel category of worms

While we touched upon the detection mechanisms for this ty

of infections, an important topic for future work is the iefith
study of the worm mitigation mechanisms.

Even with effective detection mechanisms, the feasibilit)ls]

A%

of policing nodes as they enter popular domains is not

a

TB'] G. S. Canright and K. Engo-Monsen.
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