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Abstract—Mobility can be exploited to spread malware among
wireless nodes. In this paper, we present an analytical model for
estimating the evolution of infections spanning multiple network
domains that host mobile nodes. We validate the accuracy of
the proposed model by comparing its predictions to simulations
driven by realistic mobility patterns. Our results show that
such a mobile infection requires less than a day to infect the
majority of a mobile population with thousands of wireless nodes
spanning hundreds of network domains. Moreover, if mobile
nodes are allowed to infect nodes within the same domain
that are connected to the wired network, then an even smaller
number of mobile nodes can inflict comparable damage in similar
time frames. Unfortunately, these infections generate negligible
activity at global malware monitoring stations (e.g., network
telescopes and honeypots), which contributes to their stealthiness.
By observing the infection’s spatial evolution we show that
popular domains are infected during the early stages of the
infection. This observation is likely to be useful in designing
countermeasures against mobile infections. By placing monitors
in approximately 10% of the most visited domains, we can detect
the mobile worm before it reaches a majority of the population.
Finally, we elucidate why simply placing telescopes in justthe
popular domains is not sufficient for early detection.

I. I NTRODUCTION

Mobility pervades networked devices today. For example,
millions of users access the Internet through laptops and PDAs
equipped with WiFi cards connected to thousands of Access
Points (APs) located on campuses, coffee shops, airports, etc.
This increase in connectivity however comes at a high price –
failure to secure these communication channels provides a new
propagation vector for spreading malware (i.e. self-replicating
malicious code such as worms and viruses). As a matter of
fact, the exploitation of these channels is not just our specula-
tion: variants of the Zotob/Mytob worm are suspected to have
used physical movement of computers across network domain
boundaries as a propagation strategy [23]. More recently, a
series of malware that attempt to exploit Bluetooth connections
as an infection mechanism were reported in the media [2]. The
accepted practice to protect from such worms today is to place
mobile nodes in a de-militarized zone (DMZ), separate from
the rest of the network. In such a scenario, all communication
between the mobile nodes and the wired nodes passes through
a firewall. However, mobile nodes can still infect each other
through contacts within these de-militarized zones.

Unfortunately, modelling efforts have not followed the pace
of malware evolution as most previous work describes how
infections spread over wired networks. To better understand
this impending threat, we develop a concise analytical model
that predicts the speed of infections over populations of

nomadic users traversing a collection of network access points.
The accuracy of the model is validated through simulations
driven by realistic mobility models, drawn from university-
wide traces at Dartmouth College [8]. We found that in
networks with thousands of users and hundreds of APs the
infection can reach 65% of the total population within only one
day, a relatively short time considering that infections follow
the slow pace of node movements across network domains.
Furthermore, if mobile nodes are allowed to infect co-located
nodes connected to the wired network, a scenario modelling
imperfect DMZs, we observed that even a small proportion
of vulnerable mobile nodes can propagate the infection to the
majority of the network domains within a single day.

Due to the high propagation speed of these worms, human
defense mechanisms are rendered implausible. Moreover, the
threat from this class of infections stems from the fact that
mobile nodes trivially bypass existing perimeter defenses, such
as firewalls. Since cross-domain transfer of the infection is
accomplished by the physical migration of infected nodes,
it is difficult to contain them, when no controls exist to
police the movement of nodes across domains. Such gaps
in network defenses can lead to global worm outbreaks.
Finally, the detection of these worms is challenging due to
their stealthiness. This characteristic is a consequence of the
fact that the majority of current detection techniques relies
on traffic anomalies measured at network monitors (network
telescopes[14]). Unfortunately since mobile infections scan
within the domains of infected nodes, suspicious probes on
telescopes deployed at remote domains would be absent. This
observation motivates the need for developing novel malware
containment technologies. One promising direction towards
this goal involves exploiting the spatial characteristicsof the
infection. Specifically, we observed that by placing monitors
in approximately 10% of the most visited domains, we can
detect the mobile worm before it reaches the majority of the
population. While this seems a straightforward solution tothe
early detection problem, we argue that monitor placement is
still a challenging problem with many intricacies.

The structure of rest of the paper is as follows: In the next
section we present previous models for malware and mobility
patterns. Section III introduces the model for predicting the
spread of infections among populations of mobile users. We
compare the model’s predictions to simulation results driven
by realistic mobility traces in Section IV where we also
investigate a number of variants of this worm. In Section V
we compare the mobile worm to a ’traditional’ (i.e. globally



scanning) worm and provide intuition about the temporal
evolution of the infection by connecting it to the structure
of the mobility graph in Section VI. Finally, we discuss the
issues involved with telescope placement in Section VII and
close in Section VIII with future research directions.

II. RELATED WORK

A large volume of research has focused on modelling
Internet worms. Among these, the classic homogeneous worm
model assumed all-to-all node connectivity and that every sus-
ceptible node was a target of equal probability [10]. More re-
cent models accounted for non-uniform scanning strategies[7],
as well as for the fact that node population is not uniformly
distributed over the IP address space [15]. However, much of
the prior work ([6], [18], [20] among many others), primarily
considers how malware propagates in wired networks. Instead,
we explore how mobility can facilitate the spread of infections
among groups of nomadic users traversing different network
attachment points such as WiFi Access Points. In this case
unlike previous scenarios, each infected node has a time-
varying infection transmission probability depending on its
local scope.

In the context of mobile networks, Andersonet al. derived
the speed of mobile worms through simulations [3]. While our
results seem to be in broad agreement, we focus our attention
on the actual infection evolution, so as to infer the worm
characteristics. Similar trace-driven studies covering infections
over Bluetooth networks were performed by Suet al. [19].
Unlike those previous studies, which are limited to simulations
performed using a particular trace, we propose a general
analytical model that predicts the evolution of infectionsover a
wide range of mobility patterns. Epidemic spreading in ad-hoc
networks has been studied by Mickens and Noble in [13]. That
work explained why traditional epidemic models fail in the
case of mobile networks and proposed a new framework for
such networks. While that study focused on worms spreading
within a single ad-hoc wireless network, our model explains
how infections are carried across a variety of networks by the
physical movement of mobile users.

The mobility model we use is similar to the semi-Markov
model presented in [12]. Leeet al. developed a cumulative
model for different user groups to obtain the AP-user mobility
patterns. Instead, we model the mobility patterns of individual
users. We choose to do so, because the derived mobility model
is then used to calculate the contact rates between mobile
node pairs. As we will later show, this is the key factor
that determines the rate at which the infection travels among
individual nodes.

Today, it is generally considered good practice to place
mobile nodes in a DMZ separated from wired nodes. Various
enterprise solutions exist for doing so,e.g. Cisco’s network
admission control [1]. We believe that these perimeter de-
fenses by themselves are insufficient and a more fine-grained
approach is needed to detect and contain mobile worms. We
present an outline of such defenses in Sections VI and VII.

III. W ORM MODEL

We model infections spreading over collections of mobile
users who connect to the Internet through a revolving set of
network access points. This model consists of two types of
entities:(a) network domains through which users connect to
the Internet and(b) mobile nodes,e.g. laptops and PDAs, that
are susceptible to infections and move across these domains.
In this context, domains act as mixing regions in which mobile
nodes can reach each other. We assume that an infected mobile
node can infect another susceptible mobile node if they reside
in the same domain, even for a short period of time. This
is a realistic assumption because an infected mobile node
can eavesdrop on communications from all the other wireless
nodes in the same domain and attempt to infect them directly.

The evolution of an infection can be modelled as a discrete
time, replication process over the setV of vulnerable nodes.
We denote the probability that nodei is infected at time step
t by pi,t. Furthermore, letβij be the probability that nodei
contacts nodej. Given these conditions, nodei is not infected
at time stept iff it was not infected by time stept− 1 and no
infected nodes in the domain it resides contacted nodei during
the last time step. Because these events are independent, this
probability can be expressed as:

1 − pi,t = (1 − pi,t−1)
∏

j 6=i

(1 − βjipj,t−1)

1 − pi,t = 1 − pi,t−1 −
∑

j

βjipj,t−1

Here, we use the approximation(1− a)(1− b) ≈ 1− a− b

whena ≪ 1, b ≪ 1. Thus we have,

pi,t ≈ pi,t−1 +
∑

j

βjipj,t−1 (1)

By representing (p1,t, p2,t, . . .) as a row vectorPt and
assigningβii = 1 (i.e., the probability that a nodei contacts
itself is trivially one), we can rewrite Equation (1) in a matrix
form as:

Pt = Pt−1M (2)

whereM=[βij ] is the system matrix, containing the pairwise
contact probabilities. From the definition ofPt, pi,t is the
probability that nodei is infected at timet. Therefore, the
expected number of infected nodes after timet is given by

E
[

|I|
]

=

|V|
∑

i=1

pi,t = ||Pt||1 (3)

whereI is the set of all infected nodes. This type of matrix
multiplication view of an infection is common in epidemic
modelling (e.g. [20]).

We initiate the infection by infecting a single node, sayk.
The initial conditions are then as follows:



pi,0 =

{

1 if i = k,

0 Otherwise

If multiple nodes are initially infected (also known as patient
zeros), the corresponding indices inP0 are set to unity.

A. Mobility Model

It is evident that in order to estimate the expected number
of infected nodes in Equation (3) we need to calculate the
contact probabilitiesβij . In turn, these probabilities depend
on the number of domains a node visits and the duration of
time that the node resides in each domain. We therefore need a
mobility model that describes the movement of mobile nodes
across network domains.

We model the mobility pattern of individual nodes using
semi-Markov chains. We chose the more general semi-Markov
model because it was shown that node residence times do
not follow the exponential distribution [5], [11], but are better
modelled by heavy-tailed distributions. The state spaceS =
{1, · · · , m} of the homogeneous semi-Markov chain is the set
of all network domains. The transition matrixP describing the
chain is then anm × m matrix, while D̄ = [d̄i] is an m × 1
vector, which gives the mean residence time of the node in
each domain.

We can then derive the steady-state transition probability
distribution π̃ by solving the following set of equations:

π̃ = π̃P
m

∑

i=1

π̃i = 1

Given the fraction of timẽπ that the user stays in each state
and the mean residence times̄D for each state, it is easy to
calculate the steady-state probabilityπi of the user staying in
domaini:

πi =
d̄iπ̃i

∑m

j=1
d̄j π̃j

(4)

From Equation (4) we can subsequently compute the contact
rate βxy between nodesx and y. This value is equal to the
probability that bothx andy are in the same domain at some
point in time. Without loss of generality, we say that when
a node is in the “OFF” state (i.e. it is not operational) then
it resides in the domain with index 1. Since, the infection
does not propagate when nodes are not connected, we do
not include the percentage of time in the “OFF” state in the
calculation of the contact rates. The contact rates are then
given by:

βxy =

m
∑

i=2

πx
i π

y
i (5)

whereπx
i is the percentage of the time spent byx in domain

i. We substitute Equation (5) into Equation (2) to obtain the
number of infectees as a function of time.

The last complication is that Equation (2) proceeds on
discrete time steps of uniform duration, while nodes actually
have variable domain staying times. We address this discrep-
ancy by using the mean residence time across all domains
as the discrete time step in Equation (2). While doing so
compromises the accuracy of the analytical model, as the
simulation results from Section IV demonstrate, even with
this compromise the model is able to accurately track the
infection’s evolution.

IV. EVALUATION

We derive the parameters of the mobility model described
in the previous section from traces of actual mobile user
behaviors, available from Dartmouth college [8]. Each trace
is a time sequence of the access points the mobile users visit
(identified by their MAC addresses). Traces also contain the
special ’OFF’ location, signifying a user’s departure fromthe
network. The trace we use contains 626 different access points
and tracks the movement of mobile users from 9/23/2003 to
12/10/2003. Approximately 6% of the users in our trace visited
just a single domain before entering the “OFF” state. We re-
moved such users, since states in their semi-Markov chain are
not recurrent and their steady state probabilities in states other
than the “OFF” state are trivially zero. In all, we had 6101
users. We assume that all the mobile users in the system are
vulnerable. We observed similar infection curves when onlya
fraction of the mobile users were vulnerable. Furthermore,the
infection model can easily incorporate scenarios in which only
a subset of the mobile nodes are vulnerable by appropriately
defining the set of vulnerable nodes,V . The mean domain
residence time of the users is approximately 67 minutes. We
use this value as the discrete time step in Equation (2).

A. Mobile node infection

We compare the model’s predictions with results provided
by detailed simulations. The custom simulator we developed
emulates the movements of mobile users over the same collec-
tion of APs and tracks the evolution of the infection after an
initial node (Patient zero) is infected. As before, we assume
that the infection passes from an infected node to any other
node that resides in the same network at the same time. We
ran 100 simulations, each time randomly choosing a different
initial node to infect.

Figure 1 graphs the evolution of the infection as a function
of time. In addition to the infection curve predicted by the
analytical model, we present three representative simulation
runs. These curves represent the 5th, 50th, and 95th percentiles
across all simulations, where rank is calculated based on the
time when 70% of vulnerable hosts are infected. Intuitively,
these curves represent a slow, average, and fast infection
instance depending on which node was infected first.

First, we note that the model provides a decent approxi-
mation of the average infection evolution, faithfully tracking
the curves that represent the simulations. Furthermore, the
infection spreads to approximately 60% of the users within a
single day. Given that the worm requires under a day to infect
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Fig. 1. Percentage of infected users as a function of time as predicted by
the analytical model and as demonstrated by simulation.

the majority of the population, we experimented by starting
the infection at different days during the period covered bythe
network trace. In all cases we observed patterns very similar
to those in Figure 1. We also found that the evolution speed
varied depending on the time of day when the first node
was infected. Worms that started during the daytime spread
faster than those started at night. This is due to the decreased
movement of nodes during the night hours.

B. Mixing mobile and static nodes

So far we have assumed that mobile users cannot infect
nodes connected to the static (wired) network, This model
corresponds to current security practices according to which
WiFi APs are separated from the rest of the network (e.g.
a company’s intranet) by firewalls. However, firewalls are
complex devices that are notoriously difficult to configure.
Therefore, it is possible that a misconfigured firewall would
allow infected wireless devices to contact hosts residing in
the static part of the network. More commonly, laptops can
connect directly to the static portion of the network after they
have roamed across several wireless domains (e.g. during a
business trip) effectively bypassing the barrier between the
static and mobile compartments of a network domain.

In this scenario, static hosts can be infected by mobile
nodes and subsequently carry the infection to other vulnerable
nodes. Therefore, it is no longer necessary for mobile nodesto
simultaneously reside in the same domain for the infection to
spread; a mobile node entering a network domain can contract
the infection by infected static nodes in that domain. In order
to understand how these infections spread, we modified the
original simulator to assume the worst case scenario, wherein
an infected mobile node instantly infects any domain that it
enters. The “instant infection” assumption is valid even for a
uniform scanning worm (i.e. which follows a naive strategy
of random scanning and therefore one of the slower spreading

worms). Even with a scan rate of 10 scans/sec and domains
with as few as 10% vulnerable nodes, one static node on the
average is infected within the first second from the entry of
an infected user to the domain.
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Fig. 2. (a)Rate of domain infections as a function of time with the total
mobile population (b) Rate of infection with only 25% of the mobile
nodes

Figure 2.(a) presents the number ofnetwork domainsin-
fected as a function of time when mobile nodes can infect
the domains they visit. The infection spreads to about 65%
of the domains within a day. It then slows down considerably
and takes a long time to infect the remaining domains. This
result might seem straightforward, given that 65% of mobile
nodes contract the infection within one day. In order to
investigate the relationship between the number of mobile
nodes carrying the infection and its spread over the set of
network domains, we repeated the previous experiment, with
a randomly selected subset of 1500 wireless nodes (25% of
the original population). The surprising result, as Figure2.(b)
indicates, is that infection rates in this case are comparable
to the previous case,i.e. the infection reaches∼ 60% of the
domains within a day. This result indicates that the worm speed
is not significantly hampered by the significantly smaller set of



cross-domain carriers. This phenomenon can be explained by
the association graph usually observed in social networks [9].
In that context, as well as in the context of network domains
visited by mobile hosts, domain popularity has been shown
to follow a heavy tailed distribution, whereas a small number
of domains are extremely popular followed by a large number
of less popular domains. As a result, the smaller subset of
nodes is still likely to frequent at the very popular domains
thus fuelling the growth of the infection.

V. DETECTION

Thus far we have shown that a mobile infection can take
up to a day to affect a significant portion of the vulnerable
population. Although this is fast enough to make human
defense mechanisms implausible, it is considerably slower
compared even to the naı̈ve uniform scanning strategy, or more
sophisticated variants such as flash worms that can spread over
the entire Internet in a few minutes [17].

The fact that such worms spread more slowly might lead to
the conclusion that they areeasier to contain. This, however,
is false. On the contrary, mobile infections are more difficult
to detect using conventional approaches, such as distributed
network monitors [4], [15]. In the paragraphs that follow, we
explain the underlying reason for this negative result.

A. Detection Speed

We compare the expected time to detect a mobile infection
to the average detection time of a uniform scanning worm.
Here we assume that a single network telescopes is used to
detect the infection. We define detection time as the time
elapsed from the first infection until the first probe arrives
to the address space monitored by the telescope(s). Suppose,
that the telescope covers a large fraction,α = 0.5, of the IP
space used in the network domain where it is deployed. Then,
the expected timeT to detect the first instance of the infection
for a uniform scanning worm is given by:

H(T ) =
∫ T

0
I(t) · s dt

≈
∫ T

0
esft · s dt

= N
α

⇒ T = 1

s·f ln(N ·f
α

+ 1) (6)

whereH(t) is the number of IP addresses scanned by all the
infected nodes in[0, t], s is the scan rate,N is the total number
of domains, andf is the average density of vulnerable nodes.

Substituting conservative values fors = 20 scans/min (the
Witty worm had a scan rate of roughly 1200 scans/min [22]),
N = 1000, andf = 0.01 in Equation (6) we find that a
uniform worm will be detected within 15 minutes on the
average. By this time the worm has spread to less than 2%
of the vulnerable population (calculated from the equation
for the uniform scanning worm). Furthermore, the placement
of the telescope is immaterial to the detection time. Thus,
we conclude that such a telescope can be an effective early
warning device for typical worms.

On the other hand, since mobile worms scan only their local
network, detection time is governed by the speed with which
infected mobile nodes enter the domain where the telescope
is located. Considering the same (randomly placed) single
telescope, detection will occur when the worm has spread to
half of the domains on the average. Figure 2 provides the time
for the worm to spread to 50% of the vulnerable domains
as ∼ 15 hours. Within this time, the worm infection has
already taken off, infecting a large number of hosts. Once the
worm enters the domain which contains the network monitor,
detection is much faster. On the other hand, since detection
time is dominated by the time necessary for the worm to enter
the domain, using larger telescopes within a domain does not
significantly reduce detection speed.

In short, unlike traditional uniform-scanning worms, tele-
scope size is not important and random placement is of little
use. On the other hand, given that the worm first infects
popular domains first, it is prudent to place worm monitors
in those domains.

VI. SPATIAL EVOLUTION

Until now we have investigated the temporal behavior of
the infection. However, an equally interesting aspect is the
infection’s spatial evolution, that is how the infection spreads
over the collection of network domains the mobile nodes visit.
We note that Figures 1 and 2 flatten out considerably after
an almost vertical growth during the middle phase of the
evolution graph. This behavioral change can be explained by
dividing the spatial evolution of the infection into a number of
distinct phases. The infection initially “moves” in the direction
of domains which are extremely popular, since many nodes
visit them. This is the slow take-off phase. These popular
domains (we call themhubs) are closely connected by the
group of mobile nodes which frequent them, thus forming a
dense coreof the network graph. When the infection reaches
this core, an exponential increase in the number of infected
hosts occurs, as the majority of vulnerable nodes frequently
visit the core. Finally, the infection gradually slows downafter
it has consumed the core and extends towards domains with
low contact rates (i.e. unpopular domains). Figure 3 illustrates
this phenomenon where it is clear that popular domains are
infected within the first few hours of the infection.

A. Popularity

We define the popularity of a domain as the cumulative
number of node-hours that nodes spend in that domain. This
definition accounts for both the distinct number of nodes
visiting the domain as well as the length of time a node resides
in the domain.

Intuitively, placing network monitors in the most popular
domains yields the earliest detection times. To quantitatively
measure the effect of placing multiple monitors, we placed
monitors in the topx% of the domains and measured the
detection times. As Figure 4 shows installing monitors in
10% of the domains reduced the detection time to about 10
hours. During this time the worm has spread to less than
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10% of the hosts (as seen from Figure 1). Installing additional
monitors provides only marginal benefits, reducing in the limit
the detection time to a little over 9 hours.

VII. D ISCUSSION

Deploying wireless network monitors may involve modi-
fying APs to scan through packets they forward looking for
traces of malware or deploying honeypots acting as decoys.
As we showed, placing such monitors in the top 10% of the
domains can help detect the worm early enough. However, this
strategy in itself is not sufficient to guarantee early detection.
We present two arguments to support this claim.

A. Popularity is dynamic

First, we investigate how domain popularities change over
time and the effect these changes have on detection time.
For this purpose we use the access points from the previous
dataset [8] to calculate the popularity of each domain on a
weekly basis. We then choose an initial set of the 50 most
popular APs (∼10% of the total AP population) during the first
week of the network trace and measure how this set compares
with the set of top 50 APs for every other week. The similarity
between the first and every other weekly set is estimated by
calculating the dot product between the two sets and dividing
the result by 50. In this case a product of one indicates that
the sets are identical, while zero indicates that no common
members exist between the two sets.

Figure 5.(a) plots how the similarity between the top 50
APs evolved during year 2004. It is evident that there are
wide variations with two prominent dips around weeks 30 and
50. Closer inspection of the CRAWDAD dataset revealed that
during the Fall and Spring sessions, the APs in the residential
buildings were the most popular. On the other hand, APs in
the academic buildings and athletic centers were highly ranked
during inter sessions, explaining the aforementioned changes.
Figure 5.(b) shows the corresponding median worm detection
time over time, when monitors are statically placed in the
top 50 domains according to the popularity results of the first
week. While it may seem that the difference in the detection
time is only a matter of two hours, varying between 10.5
and 12.5 hours, the effects of this difference are dramatic.As
Figure 1 indicates, this disparity results in a infection spread
of <5% in the case of 10.5 hours, as opposed to∼30% when
the detection time is 12.5 hours. Thus, reducing the detection
time window is crucial to providing sufficient time if the worm
defenses are to be effective.

B. Evasive worms

The second reason why static placement of monitors is
insufficient, is that worms can potentially detect their presence
and avoid the networks in which these monitors are deployed.
Rajabet al. have presented an efficientprobe-response attack
that can be used to discover the locations of network monitors
deployed on the (wired) Internet [16]. A similar technique
could potentially be applied in the context of mobile infections.
In this case, worm instances probe the domain they currently
reside, using standard network tools such as ping and ARPs,
or even passively eavesdrop all ongoing communications to
the AP. If a domain is believed to host a monitor the worm
will not attempt to infect any mobile nodes in that domain,
thus avoiding detection.

On the other hand, if avoiding popular domains, in which
monitors are deployed, slows down the infection to the point
where human intervention is practical, then the threat posed
from theseevasiveinfections is minimal. To verify whether
this is true, we simulated such an evasive worm that does
not try to infect the 50 most popular domains, and measured
its infection speed. Unfortunately, as Figure 6 indicates,the
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infection rate is still significant, with 60% of the hosts infected
within 3 days on the average.

From the two arguments presented above it is clear that
placing monitors in the most popular domains is not a com-
plete solution to the problem of early detection. The actual
strategy for their placement is part of our future work.

VIII. S UMMARY AND FUTURE DIRECTIONS

We presented and validated an analytical model that de-
scribes the evolution of worms that exploit node mobility to
propagate. We evaluated infection speeds in different scenar-
ios: first, when mobile users can only infect each other as they
move across a collection of network domains and second when
infections can spread from mobile users to static nodes. Our
ultimate goal is to use this model to design effective detection
and containment mechanisms for this novel category of worms.
While we touched upon the detection mechanisms for this type
of infections, an important topic for future work is the in-depth
study of the worm mitigation mechanisms.

Even with effective detection mechanisms, the feasibility
of policing nodes as they enter popular domains is not
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Fig. 6. Worm evolution when the worm is inactive in the top 50 domains.

straightforward. Numerous practical concerns for containment
mechanisms designed for mobile infections must be addressed,
including how to exploit topological information to limit the
damage from potentially infected nodes, how to appropriately
apply the notion of hard-LANs [21] in this setting, and how
to track (in a tamper-resistant manner) the movement of nodes
across network domains.
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