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Abstract—Scientists deploy environmental monitoring net- among others). While each technique uses a differenttitatis
works to discover previously unobservable phenomena and method to detect faults, they all rely on the assumption that
quantify subtle spatial and temporal differences in the phgical faulty data are inherentlgifferent from so-callechormal data.
quantities they measure. Our experience, shared by others, In thi that the blanket fi that
has shown that measurements gathered by such networks are n this paper we a_rgue at the blanket assump 'O_n a
perturbed by sensor faults. In response, multiple fault de¢ction all measurements which do not conform to some notion of
techniques have been proposed in the literature. Howevemithis normalcy are due to faults and thus should be discarded, is a
paper we argue that these techniques may mis-classify event precarious one. One of the goals of environmental monigorin
(e.g. rain events for soil moisture measurements) as faults, pote networks are to detect rare and sub#lents. We buttress

tially discarding the most interesting measurements. We uport . . . .
this argument by applying two commonly used fault detection this argument by employing two fault detection techniques,

techniques on data collected from a soil monitoring network initially proposed in [6], to detect faults in a dataset eoted
Our results show that in this case, up to 45% of the event from a soil monitoring network we deployed. We then measure
measurements are misclassified as faults. Furthermore, ting the  how many events (in this context rainfall instances) were
fault detection algorithms to avoid event misclassificatin, causes classified as faults. Our results show that these technicares

them to miss the majority of actual faults. In addition to exposing . . o .
the tension between fault and event detection, our findings misclassify up to 45% of the events as faults. Moreovertgni

motivate the need to develop novel fault detection mechaniss the techniques’ parameters such that events are no longer
which incorporate knowledge of the underlying events and a&& misclassified, leads to a large number of false negatives, th
customized to the sensing modality they monitor. is failing to detect actual faults.

In addition to identifying and quantifying the danger of
misclassifying events as faults using specific fault déeact

Wireless sensor networks have been used in a numbera@iforithms, we provide a list of directions for developing
environmental monitoring applications [1-3], offeringest novel fault detection algorithms that are sensitive to é&ven
tists the ability to observe physical phenomena in spatidl aSpecifically, we stress the importance of leveraging dtoe
temporal granularities not previously possible. In tutrese natures of events, as reflected by different modalities, in
observations reveal previously unknown physical phen@memeducing the number of misclassifications. We observe that
and subtle variationse(g. micro-climates) that scientists couldthe onset of an event can be indistinguishable from a fault.
not previously measure. Furthermore, different sensors register delayed versins

Alas, environmental monitoring networks introduce theithe same underlying events, provide another argument for
own set of problems: results from early deployments havemporarily storing collected measurements before ratayi
shown that sensor faults occur occasionally, causingyfauthem to the back-end.
data to be recorded and collected [3-5]. The underlyingecaus This paper has five sections. In the section that follows we
of these faults include incorrect hardware and softwaréydes review related work in the area of fault and event detection i
malfunctioning transducers and low battery levels. Iregsipe wireless sensor networks. Section Ill summarizes the twt fa
of their origin, faults need to be detected so the networksdodetection techniques, originally presented in [6], we usknis
not consume its resources in delivering corrupted measustddy and describes the types of faults they are designed to
ments and these measurements do not pollute the experimdatect. In Section IV we present the results of applyingehes
Given the importance of this problem, a numbefanfit detec- algorithms to data gathered from a soil monitoring network
tion techniques have been proposed in the literateigg, (6, 7] and quantify the percentage of events that are misclassified

|. INTRODUCTION
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Fig. 2. Reaction of box temperature and soil moisture moeslito a rain
event shown on the x-axis. Soil water pressure is measurth@ aatio of water
volume to the total soil volume. Also shown is the normal bemperature
profile, generated by averaging the box temperature at tme siane of day
during all non-event days.

and soil moisture register a rainfall event. The duratiod an
magnitude of these events are recorded by a weather station
co-located with the soil monitoring network. The figure slsow
a non-event day followed by a day with considerable rain. One
can notice that box temperature during the second day glearl
differs from the normal diurnal temperature pattern. The
Fig. 1. Environmental monitoring mote deployed in the Juy Beetlands  reaction of soil moisture is distinctly different—the evsn
sanctuary to monitor soil moisture and soil temperature. onset causes a sudden increase in the value recorded by the
soil moisture sensor followed by a period of gradual drying
of the soil and corresponding decrease in soil moisture. The
faults. Finally, we close in Section V with a discussion aboumagnitude of the increase and the duration of the decaygerio
the requirements for future fault detection algorithms. are controlled by the amount and the duration of the rainfall

A. Events in Environmental Monitoring Networks
Il. RELATED WORK

We present our work using data from a soil monitoring
network we deployed at the Jug Bay wetlands sanctuary. Thigrault characterization and detection has received signific
sanctuary is located along the Patuxent river in Marylandl aattention in the sensor network community, starting wita th
serves as the habitat for a variety of turtle species, inatud work of Koushhanfar et al. who proposed a cross validation
the Eastern Box turtle. These turtles are of scientific ager procedure to detect generalized sensor faults in real thhe [
because their sex is not determined by sex genes but by Mere recently, Ramanathan et al. provided an account of the
incubation temperature. It has been shown in the lab thatyges and the underlying causes of sensor faults they encoun
difference of two degrees centigrade is enough to produde mtered in three soil sensor deployments [5]. Partially nauéd
instead of female offsprings. On the other hand, the in viay these findings, Sharma et al. provided a taxonomy of sensor
conditions of box turtle nests have not been observed in tfaalts and proposed multiple approaches to detect thesis fau
wild. Considering environmental conditions in turtle reeate in real and simulated datasets [6]. In this paper, we focus
currently unknown, correlating rare events with nest cbos on understanding how existing fault detection mechanisms
could reveal valuable information. The network we deployegerform in datasets that contain events which deviate from
in Spring 2007 continuously monitored the conditions oéthr the norm.
turtle nests until the eggs hatched in September of the samébadi et al. introduced a declarative approach for detgctin
year. We use Tmote Sky motes [8], coupled with EOH sensor events [7]. Specifically, they proposed distrilguéind
EC-5 soil moisture sensors from Decagon and custom ssibring “event predicates” on a network’s sensor nodes. The
temperature sensors (see Fig.1). We also measure the tempedes then compute in-network joins of the collected dath an
ature inside each mote’s enclosure using the mote’s ondboabtify the user when one of the described event predicages ar
temperature sensor. We term this readomy temperature to  satisfied. We are interested in understanding whether gvent
differentiate it from soil temperature. can be misclassified as faults using fault detection tectesq

Figure 2 presents an example of how box temperatyseoposed in the literature.



I1l. M ETHODOLOGY whereS;; is the vector ofs;; estimatesS; = [1 | S;] where
We describe the two fault detection techniques we use afid i the vector ofs; measurements, and = [fo, B4

present the faults they are designed to detect. Using the LLSE formulation, we sef to (S]'S;)7'S s;;
using measurements from a training set.
A. Types of Faults Then, the estimation error is; (t) = 3 (t) —s;(t). If €;;(t)

We focus on two types of sensor faults that have been expisr-greater than a threshold;;, we considers;(t) as faulty.
imentally observed by a number of environmental monitoringhe thresholdl;; is set such thap% of the estimation errors
networks. Using the terminology coined by Sharma et are belowT;; when the model is applied to the training set.
in [6], we consider SHORT and NOISE faults. SHORT faultén practice, we compute the threshdl{; for each ofi's k
are characterized by a drastic difference between the murrgeighbors and declare the readingt) as faulty if more than
and the previous sensor measurement. On the other handg,reighbors have;; > T;;.

NOISE fault is characterized by a period during which the
data samples exhibit larger than normal variations. Shaima
al. also defined the CONSTANT fault type, in which case th®. Evaluation Metrics

standard deviation of the collected samples is (almost).zer |n order to study the misclassification of events as faults,
Instead of defining a third category, we expand the definiion we need to establish appropriate metrics. The misclastifica
NOISE faults to include sets of measurements whose standgiékric we use has two variants depending on the method under
deviation is significantlyhigher or lower compared to the evaluation. First, the SHORT-rule and the LLSE methods
overall standard deviation. classify individual sensor readings as faulty and theeetbe
misclassification errop: can be defined as

IV. EVALUATION

B. Fault detection techniques

In order to detect the fault types described above and to
study the prevalence of event misclassifications, we imptgm total number of event measurements
the heuristic-based and estimation-based techniquesriegs In this case, arevent measurement is a sensor readinge.g.
in [6]. box temperature) during an event (rainfall).

The heuristic-based techniques consist of the SHORT ruleOn the other hand, the NOISE-rule method declares sets
and the NOISE rule. In the SHORT rule, whenever the absolute N successive samples as faulty and therefore the metric
difference between the current and the last measurementnigst account for the misclassification duration. Let us say
larger thand, the current measurement is classified as that thei-th event span#’; samples and lek; be the number
fault. The appropriate value df is obtained from leveraging of successive samples that are declared as faulty. Then, all
domain knowledge. The NOISE rule declares a fault whenevaats of sample®; within F; that overlap withE; contribute
the standard deviationo{,mp.) Of a set of N successive to the misclassification error. One can then obtain the total
measurements exceeds a threshold. Specificalby,qif,,;c is misclassification error by summing over all misclassifoati
not within o4,qin =0 aii0w, We consider allv samples as faulty. instances:

We computer,,..i, by dividing the training data into sets &f o= 2. Di

consecutive samples and compute the standard deviation for >i B

each of these sets. We then plot the histogram of all standarqjaying established a misclassification metric, we need a
deviation values and set;..i, to be the mean value of themetric to study the efficacy of the fault detection method

histogram. Furthermores,i,., is set as an integer multiplejiself. The reason is that one can set a method’s parameters t
of the standard deviation of the histogram. In Section IV, W@jinimize the number of misclassifications. Doing so howgver

present the effect of varyinga.., on the misclassification might cause the method to fail to detect the actual faults. We
error. Finally, we found empirically that setting the numbé se the false negative ratio, defined as the fraction of gault

samples N, to the equivalent of a 6-hour time window gavehat were not detected by the method to the total number of

the best results. S o faults, for this purpose.
The estimation-based technique is an application of lin-

ear least-square estimation (LLSE) [10] and leverages aRy Data

correlations between the measurements collected by Bpatia We apply the fault detection techniques presented in Sec-
distributed sensors. Letand j be two sensors whose meation Ill-B to the data obtained from the Jug bay turtle

surementss; (t) and s;(t) are correlated. We assume that thenonitoring sensing network [11]. Specifically, we use the

correlation can be represented by a linear model and thergfyx temperature and soil water contene.( soil moisture)

~number of event measurements tagged as faults

the estimate of;(¢) based ors;(t) can be written as: modalities collected by three motes at the deploymentEkte.
raw data series consists of measurements taken at ten minute
5i(t) = Bo; + Bij * s;(¢) intervals, but we use a smoother version by calculating the

average of every two sensor readings.
R Approximately five months of data was collected from the
Sij =850 Jug bay sensor deployment, from 2007/06/22 to 2007/11/27.

Equivalently, in matrix notation,
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MISCLASSIFICATIONS AND FALSE NEGATIVES FOR THELLSE METHOD
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B In order to study the effect of SHORT faults on misclas-
50} = o i i — sification, we evaluate the misclassification error andefals
negative fraction for the SHORT rule as a function of in-
creasingd. Figure 4(a) and Figure 4(b) show the results on
Fig. 3. Box temperature test data after injecting SHORT a@I9¥ faults. goj| moisture and box temperature respectively. As one avoul
expect, SHORT faults have a higher impact on soil mois-
ture misclassification compared to box temperature because
We use one month of data from each of the sensors f@n events generate measurement spikes that can be mis-
training purposes and the rest as test data. The trainirg diaterpreted as faults. For this reason, we find that a sigmific
was thoroughly cleaned using a median filter. Moreover, weoportion of the misclassifications occur in the first haifih
visualized the data and manually removed any faulty readingf the event period, jeopardizing the most valuable parhef t
to make the training set devoid of faults. The set of evengyent data. Even though the misclassification error deeseas
that occurred during the deployment period is gathered framsd increases, one still observes considerable misclassiiicat
a weather station located approximately 700 meters awewyors during the events’ first half hour. It is clear thastluss
from the monitoring site, which records precipitation data can be mitigated by buffering suspicious data, and levaragi
15-minute intervals [12]. Twenty one major events occurrétie soil moisture event signature to discriminate them from
during the measurement period, spanning a total of 9,48Wlts. The SHORT rule works well for box temperature data
rainfall minutes (158 hours). since box temperature does not show an equivalent leading
edge behavior during an event’s onset.

Next, we study the misclassification error for the NOISE
rule as a function ob,;,.,. Figures 4(c) and 4(d) show the
As we mentioned in Section IV-A, we are also intereste%er_formance of the_ NOI.SE rule. The persistent misclassifi-

cation error for soil moisture across afl,;;,, values can

in the percentage of real faults that the detection algmsth b lained by the ob tion that soil ist d i
miss. However, in order to calculate this ratio we need tokno € explained by the observation that Soil moisture does no
how any variation unless when it spikes in reaction to rain

which measurements correspond to actual faults. Cone'g;jer? L . e )
ents. Therefore, avoiding misclassifications requisege

that we do not know which actual sensor readings are faulﬁx O I
we resort to artificially injecting SHORT and NOISE faults? allow values which in turn leads to missing most actual faults.

To do so, we use the procedure outlined by Sharma et al. [6]On the other hand, as Figure 4(d) indicates, increasing
To inject a SHORT fault, a sample is picked at random “atiow does lead to a sharp decrease in misclassification error
and is replaced by the valug = v; + f  v;. SHORT faults fo_r box 'Fe_mp_erature. Moreover, we found that_most of the
with intensitiesf = {0.5,1,2} and f = {0.1,0.2,0.5} were misclassifications are (_:aused due_ tp the lower side of tlee r_ul
injected in the test set for box temperature and soil maist©train —aliow), Which is not surprising as box temperature is
respectively. To inject a NOISE fault, a set Bf successive Known to drop before, during and after a rain event (cf. Fjg. 2
samples is randomly chosen and random values drawn fréththe same time, increasing.ui.., has the undesired side
the distribution~ N (0, 02) are added to the test set. Nnoiseeffect of increasing the ratio of false negatives by thrieefo
faults causing an increase 0f5x,1.5x, and3x in standard  For the LLSE method, we set the confidence interval,
deviation @) were injected in the box temperature and sop, to 95% and the neighbor-opinior, to two. Table |
moisture test data sets. The fraction of SHORT faults in thesents our findings for the two sensing modalities. The
data was set at.5%. We inject NOISE faults consisting of higher misclassification error associated with soil maostu
144 and 360 consecutive samples, such that the total numben be attributed to the observation that soil moistureasns
of NOISE faults samples in the datati$%. Note that SHORT react differently depending on their location, due to soil
faults are ephemeral and are thus are much more in numheterogeneity. Figure 5 presents an example of phenomenon,
compared to the NOISE faults which last for longer periods afy plotting the reaction of three soil moisture sensors taia r
time. Figure 3 provides an example of the artificially inggtt event. Node 5 and Node 6 tend to move together, whereas the
fault data for box temperature. reaction of Node 2 is much lower in magnitude.

C. Fault Injection
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Fig. 5. Reactions of different soil moisture sensors to a esent.

V. DISCUSSION

to raise is that we need a new acid test &rfault detection
techniques. This test will evaluate their performance ia th
presence of events. Doing so is crucial, because envirotainen
monitoring networks are in many cases deployed for the
purpose of detecting rare and subtle events that deviate fro
the norm.

As we noted earlier, events have characteristic signatures
that are specific to each sensing modality. For example, a
rain event causes a sudden increase in the value of measured
soil moisture followed by a period of gradual decay. The
decay rate is a function of multiple factors, including tlod s
type, amount of rain, and duration of rain. Furthermore, the
onset of a rain event is indistinguishable from a SHORT fault.
This observation suggests that motes should not premgturel
characterize measurements as faults but should rathesrbuff
enough data points to be able to compsaurgpicious measure-
ments against event signatures. The same argument applies
to comparing measurements across different motes, because

The results from Section IV indicate that some fault déN€S€ motes might be registering the same event with differe

tection techniques are susceptible to misclassifying tsvas

time lags.

faults. While more sophisticated techniques might be able t While different from the 'baseline’ signal, we conjecture
reduce the percentage of misclassifications, the point we wé¢hat, as the rain example implies, events follow distinad an



common patterns that can be identified and exploited to eedu¢r]
misclassifications. As part of our previous work, we used
a Principal Component Analysis (PCA) based technique tRy)
identify the most significant characteristics of the bamseli
signal {.e. the daily, seasonal cycles) [13]. We believe that
a similar methodology can be used to discover the common
characteristics of event signals. This information canhent [9]
encoded and used to differentiate events from true faults.
Our experience has shown that a high percentage of normg
periods (i.e. periods during which no events occurred) cgn]
be misclassified as event periods [13]. We found that a
small fraction of these misclassification were due to faulty
sensors that did not accurately measure the underlyinggatiys[12]
phenomena. It is therefore desirable to unify the problefns o
event andfault detection as a classification problem, in which[13
the algorithm assigns one of three labels to each time period
normal, faulty, event. Furthermore, the assignment of labels
should be driven by the application-specific misclassifirest
costs. For example, misclassifying a normal period as an
event period hurts an event-detection application far flean
failing to detect an event completely. On the other hand,
misclassifying events as faulty data would hurt the apfiica
the most.
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