A building block approach to sensornet systems

Pratal Dutta, Jay Taneja, Jaein Jeong, Xiaofan Jiang, and David Culler

November 2008

Problems

- 1. How to produce reusable hardware when the requirements vary so widely among applications
- 2. How to support all three phases of development
 - a) prototyping
 - b) pilot studies
 - c) production

Approach	Pros	Cons
modular, bus- based		
highly integrated		
modular, assembly- optimized		
building block		

Approach	Pros	Cons
modular, bus- based	 prototyping is mechanically simple 	 complex interface for peripherals requires multiplexing too bulky/fragile/expensive for pilot and production use
highly integrated		
modular, assembly- optimized		
building block		

Approach	Pros	Cons
modular, bus- based	 prototyping is mechanically simple 	 complex interface for peripherals requires multiplexing too bulky/fragile/expensive for pilot and production use
highly integrated	 software development and desktop experimentation are easy 	 too few I/O lines exported for prototyping and pilots not all features may be needed onboard sensors inadequate for many purposes
modular, assembly- optimized		
building block		

Approach	Pros	Cons
modular, bus- based	 prototyping is mechanically simple 	 complex interface for peripherals requires multiplexing too bulky/fragile/expensive for pilot and production use
highly integrated	 software development and desktop experimentation are easy 	 too few I/O lines exported for prototyping and pilots not all features may be needed onboard sensors inadequate for many purposes
modular, assembly- optimized	 optimized for machine assembly during production 	 hand assembly difficult during prototyping and pilot studies too few internal signals exposed for prototyping
building block		

Approach	Pros	Cons
modular, bus- based	 prototyping is mechanically simple 	 complex interface for peripherals requires multiplexing too bulky/fragile/expensive for pilot and production use
highly integrated	 software development and desktop experimentation are easy 	 too few I/O lines exported for prototyping and pilots not all features may be needed onboard sensors inadequate for many purposes
modular, assembly- optimized	 optimized for machine assembly during production 	 hand assembly difficult during prototyping and pilot studies too few internal signals exposed for prototyping
building block	•••	•••

- 1. module
- 2. carrier
- 3. interface

- 1. module
 - a) deep expertise
 - b) specialized equipment
 - c) frequent use
 - d) convenience
- 2. carrier
- 3. interface

- 1. module
- 2. carrier
 - a) prototyping
 - b) pilot studies
 - c) production
- 3. interface

- 1. module
- 2. carrier
- 3. interface
 - a) eliminate system bus
 - b) export a wide electrical interface
 - c) support many physical interconnection options

- 1. what to put into modules
- 2. specific hardware
- 3. carriers for multi-phase support

- 1. what to put into modules
 - a) core (expertise, equipment, use)
 - b) USB (use, convenience)
 - c) storage (equipment, convenience)
- 2. specific hardware
- 3. carriers for multi-phase support

- 1. what to put into modules
- 2. specific hardware
 - a) core
 - i. microcontroller
 - ii. radio
 - iii. flash
 - iv. form factor, interconnections, power, exports
 - b) USB
 - c) storage
- 3. carriers for multi-phase support

Aside: Radio energy use

$$c = c_s \cdot t_s + c_p \cdot t_p + c_t \cdot t_t + c_r \cdot t_r$$

- 1. what to put into modules
- 2. specific hardware
- 3. carriers for multi-phase support
 - a) prototyping
 - b) pilot studies
 - c) production

Development board

Hardware inlining

- 1. hydrological cycle monitoring
- 2. AC power monitoring
- 3. test beds

- 1. hydrological cycle monitoring
 - design time: 7 days → 2 days
 - unit cost: \$11.59 → \$10.83
- 2. AC power monitoring
- 3. test beds

- 1. hydrological cycle monitoring
- 2. AC power monitoring
 - design time: 1 week
 - unit cost: \$26.40
 - "well within the constraints of most research budgets"
- 3. test beds

- 1. hydrological cycle monitoring
- 2. AC power monitoring
- 3. test beds
 - design time: "months" \rightarrow 3 days
 - unit cost: \$141.30

Issues

- non-experimental case studies
- "Our experience shows that the building block approach leads to greater reuse, more compact designs, increased simplicity, and lower overall part counts."
- pros and cons of building block approach
- "preserve the artifacts and learnings along the way"