
Integrating Wireless Sensor Networks with the Web
Walter Colitti

Vrije Universiteit Brussel - ETRO
Pleinlaan 2, 1050 Brussels

+32 2 629 10 27

wcolitti@etro.vub.ac.be

Kris Steenhaut
Vrije Universiteit Brussel - ETRO

Pleinlaan 2, 1050 Brussels
+32 2 629 29 76

ksteenha@etro.vub.ac.be

Niccolò De Caro
Vrije Universiteit Brussel - ETRO

University of Perugia - DIEI
+32 2 629 10 27

ndecaro@etro.vub.ac.be

ABSTRACT
IPv6 over Low power Wireless Personal Area Networks

(6LoWPAN) has accelerated the integration of Wireless Sensor

Networks (WSNs) and smart objects with the Internet. At the

same time, the Constrained Application Protocol (CoAP) has

made it possible to provide resource constrained devices with

RESTful web service functionalities and consequently to integrate

WSNs and smart objects with the Web. The use of Web services

on top of IP based WSNs facilitates the software reusability and

reduces the complexity of the application development. This work

focuses on RESTful WSNs. It describes CoAP, highlights the

main differences with HTTP and reports the results of a simple

experiment showing the benefits of CoAP in terms of power

consumption compared to HTTP. The paper also describes the

design and development of an end-to-end IP based architecture

integrating a CoAP over 6LowPAN Contiki based WSN with an

HTTP over IP based application. The application allows a user to

access WSN data directly from a Web browser. The main system’s

building blocks and functionalities are described.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network

Protocols – Applications.

General Terms
Performance, Design, Standardization.

Keywords
Web applications, Web of Things, REST, CoAP.

1. INTRODUCTION
Recent advances in Wireless Sensor Network (WSN) technology

and the use of the Internet Protocol (IP) in resource constrained

devices has radically changed the Internet landscape. Trillions of

smart objects will be connected to the Internet to form the so

called Internet of Things (IoT). The IoT will connect physical

(analogic) environments to the (digital) Internet, unleashing

exciting possibilities and challenges for a variety of application

domains, such as smart metering, e-health logistics, building and

home automation [7].

The use of IP technology on embedded devices has been recently

promoted by the work of the IP for Smart Objects (IPSO)

Alliance1, a cluster of major IT/telecom players and wireless

silicon vendors. At the same time, the Internet Engineering Task

Force (IETF) has done substantial standardization activity on

IPv6 over Low power Wireless Personal Area Networks

1 http://ipso-alliance.org/

(6LoWPAN) [8]. This new standard enables the use of IPv6 in

Low-power and Lossy Networks (LLNs), such as those based on

the IEEE 802.15.4 standard [10]. In addition to 6LowPAN, IETF

Routing over Low-power and Lossy networks (ROLL) Working

Group has designed and specified a new IP routing protocol for

smart object internetworking. The protocol is called IPv6 Routing

Protocol for Low-power and Lossy networks (RPL) [9].

One of the major benefits of IP based networking in LLNs is to

enable the use of standard web service architectures without using

application gateways. As a consequence, smart objects will not

only be integrated with the internet but also with the Web. This

integration is defined as the Web of Things (WoT). The advantage

of the WoT is that smart object applications can be built on top

Representational State Transfer (REST) architectures. REST

architectures allow applications to rely on loosely coupled

services which can be shared and reused. In a REST architecture a

resource is an abstraction controlled by the server and identified

by a Universal Resource Identifier (URI). The resources are

decoupled by the services and therefore resources can be

arbitrarily represented by means of various formats, such as XML

or JSON. The resources are accessed and manipulated by an

application protocol based on client/server request/responses.

REST is not tied to a particular application protocol. However,

the vast majority of REST architectures nowadays use Hypertext

Transfer Protocol (HTTP). HTTP manipulates resources by means

of its methods GET, POST, PUT, etc [6].

REST architectures allow IoT and Machine-to-Machine (M2M)

applications to be developed on top of web services which can be

shared and reused. The sensors become abstract resources

identified by URIs, represented with arbitrary formats and

manipulated with the same methods as HTTP. As a consequence,

RESTful WSNs drastically reduce the application development

complexity.

The use of web service in LLNs is not straightforward as a

consequence of the differences between Internet applications and

IoT or M2M applications. IoT or M2M applications are short-

lived and web services reside in battery operated devices which

most of the time sleep and wakeup only when there is data traffic

to be exchanged. In addition, such applications require a multicast

and asynchronous communication compared to the unicast and

synchronous approach of standard Internet applications [11].

The Internet Engineering Task Force (IETF) Constrained

RESTful environments (CoRE) Working Group has done major

standardization work for introducing the web service paradigm

into networks of smart objects. The CoRE group has defined a

REST based web transfer protocol called Constrained Application

Protocol (CoAP). CoAP includes the HTTP functionalities which

have been re-designed taking into account the low processing

power and energy consumption constraints of small embedded

devices such as sensors. In order to make the protocol suitable to

IoT and M2M applications, various new functionalities have been

added [12].

With 6LoWPAN technology becoming mature, the WoT has

started playing major role among the research community.

Various research papers proposing REST/HTTP architectures for

WSNs have recently appeared. The work in [1] proposes a

RESTful architecture which allows instruments and other

producers of physical information to directly publish their data. In

[2], the authors propose a REST/HTTP framework for Home

Automation. The work in [3] proposes a toolkit which allows the

user to create web services provided by a specific device and to

automatically expose them via a REST API. The authors in [4]

show how different applications can be built on top of RESTful

WSNs. The work in [5] illustrates the real world implementation

of a RESTful WSN. The network is deployed across various

university buildings and it is thought for the development of

applications and services for professors and students.

The aforementioned research work focuses on RESTful WSNs but

do not use CoAP as application protocol. The activity of the

CoRE group has only recently started and therefore CoAP has not

yet been considered.

In this work we present a RESTful WSN based on CoAP. It has

twofold objective. Firstly, it describes the major differences

between CoAP and HTTP and compares the two protocols in

terms of power consumption and overhead. In order to

demonstrate the benefits of CoAP, we ran two simple experiments

with the Contiki Operating System: the first one using CoAP over

6LoWPAN and the second one using HTTP over 6LoWPAN. The

results show that the power consumption is drastically lower when

using CoAP compared to HTTP.

Secondly, the paper describes the design and development of an

end-to-end IP based architecture integrating a CoAP over

6LowPAN Contiki based WSN with an HTTP over IP based

application. The application allows a user to access WSN data

directly from a Web browser. The system has been designed for

Greenhouse monitoring. However, it is work in progress and it

has not yet been deployed. Therefore, the aim of the paper is to

show how the use of CoAP and 6LoWPAN simplifies the

integration of WSNs with Web applications. The paper provides

an overview of the basic application building blocks focusing on

the gateway which connects HTTP clients to the WSN.

The rest of the paper is organized as follows. Section 2 describes

the major functionalities of CoAP highlighting the differences

with HTTP. It also gives a brief overview of the existing open

source implementation of CoAP. Section 3 reports the results of

an experiment illustrating the benefit of CoAP in terms of power

consumption compared to HTTP. Section 4 describes the design

and development of an end-to-end IP based architecture

integrating a CoAP over 6LowPAN Contiki based WSN with an

HTTP over IP based application. Section 5 concludes the paper.

2. Constrained Application Protocol
In March 2010, the IETF CoRE Working Group has started the

standardization activity on CoAP. CoAP is a web transfer

protocol optimized for resource constrained networks typical of

IoT and M2M applications. CoAP is based on a REST

architecture in which resources are server-controlled abstractions

made available by an application process and identified by

Universal Resource Identifiers (URIs). The resources can be

manipulated by means of the same methods as the ones used by

HTTP: GET, PUT, POST and DELETE.

CoAP is not a blind compression of HTTP. It consists of a subset

of HTTP functionalities which have been re-designed taking into

account the low processing power and energy consumption

constraints of small embedded devices such as sensors. In

addition, various mechanisms and have been modified and some

new functionalities have been added in order to make the protocol

suitable to IoT and M2M applications. The HTTP and CoAP

protocol stacks are illustrated in Figure 1.

Figure 1. HTTP and CoAP protocol stacks

The first significant difference between HTTP and CoAP is the

transport layer. HTTP relies on the Transmission Control Protocol

(TCP). TCP’s flow control mechanism is not appropriate for

LLNs and its overhead is considered too high for short-lived

transactions. In addition, TCP does not have multicast support

and is rather sensitive to mobility. CoAP is built on top of the

User Datagram Protocol (UDP) and therefore has significantly

lower overhead and multicast support.

CoAP is organized in two layers. The Transaction layer handles

the single message exchange between end points. The messages

exchanged on this layer can be of four types: Confirmable (it

requires an acknowledgment), Non-confirmable (it does not need

to be acknowledged), Acknowledgment (it acknowledges a

Confirmable message) and Reset (it indicates that a Confirmable

message has been receive but context is missing to be processed).

The Request/Response layer is responsible for the transmission of

requests and responses for the resource manipulation and

transmission. This is the layer where the REST based

communication occurs. A REST request is piggybacked on a

Confirmable or Non-confirmable message, while a REST

response is piggybacked on the related Acknowledgment message.

The dual layer approach allows CoAP to provide reliability

mechanisms even without the use of TCP as transport protocol. In

fact, a Confirmable message is retransmitted using a default

timeout and exponential back-off between retransmissions, until

the recipient sends the Acknowledgement message. In addition, it

enables asynchronous communication which is a key requirement

for IoT and M2M applications. When a CoAP server receives a

request which is not able to handle immediately, it first

acknowledges the reception of the message and sends back the

response in an off-line fashion. Tokens are used for

request/response matching in asynchronous communication.

The transaction layer also provides support for multicast and

congestion control [14].

One of the major design goals of CoAP has been to keep the

message overhead as small as possible and limit the use of

fragmentation. HTTP has a significantly large overhead. This

implies packet fragmentation and consequent performance

degradation of LLNs. CoAP uses a short fixed-length compact

binary header of 4 bytes followed by compact binary options. A

typical request has a total header of about 10-20 bytes. Next

Section shows the significant advantage of the compact overhead

of CoAP in terms of battery lifetime with respect to HTTP.

Since a resource on a CoAP server likely changes over time, the

protocol allows a client to constantly observe the resources. This

is done by means of observations: the client (the observer)

registers itself to the resource (the subject) by means of a modified

GET request sent to the server. The server establishes an

observation relationship between the client and the resource.

Whenever the state of the resource changes, the server notifies

each client having an observation relationship with the resource.

The duration of the observation relationship is negotiated during

the registration procedure [13].

Although CoAP is work in progress, various open source

implementations are already available. The two most known

operating systems for WSNs, Contiki and Tiny OS, have already

released a CoAP implementation. In addition, there are two open

source implementations not specifically designed for WSNs: an

implementation in C language called libcoap2 and one in Python

language called CoAPy3.

3. CoAP power consumption evaluation
The use of UDP as transport protocol and the reduction of the

packet header size significantly improve the power consumption

and battery lifetime in WSNs. In order to evaluate the

performance improvement of CoAP compared to HTTP, we

executed a simple experiment. We generated a series of web

service requests first between a CoAP client/server system and

then between an HTTP client/server system.

The CoAP server is implemented by means of a Tmote Sky sensor

mote running Contiki with 6LoWPAN/RPL on the network layer

and CoAP on the application layer. The CoAP implementation of

Contiki already includes many features of the protocol, such as

message syntax and semantics, methods, response codes, option

fields, URIs and resource discovery. However, being work in

progress there are still important functionalities missing such as

asynchronous transactions, observations and congestion control.

The CoAP client is implemented by running libcoap on a Linux

Ubuntu machine with a USB Contiki-gateway which interfaces

with the WSN. This is one of the basic building blocks of the

gateway described in Section 4.

The HTTP server is obtained with the same Tmote Sky platform

as in the CoAP server and Contiki loaded with the HTTP server

instead of the CoAP server. The HTTP client is obtained by

replacing libcoap with cURL4, a command line program including

HTTP functionalities. In both experiments the client polls the

server every 10 seconds for 20 minutes by requesting temperature

and humidity. When using CoAP the request has the following

format: GET coap://[<mote_ip_address>]:<port_number>/

readings, where mote_ip_address is the mote’s IPv6 address,

port_number is the mote’s port number and readings is the

resource the client is requesting for (in this case temperature and

humidity). When using HTTP the request has the following

format: GET

2 http://libcoap.sourceforge.net/

3 http://coapy.sourceforge.net/

4 http://curl.haxx.se/

http://[<moteip_address>]:<port_number>/readings where the

parameters have the same meaning as when using CoAP.

In both CoAP and HTTP cases, the server responds by sending

the sensor readings embedded into a Java Script Object Notation

(JSON) file. JSON is a lightweight text based open standard for

data client/server data exchange. An example of the response’s

payload is the following: {"sensor":" 0212:7400:0002:0202

","readings":{"hum":31,"temp":23.1}}, where the sensor is

recognized by the last four groups of its IPv6 address, hum is the

humidity resource and temp is the temperature resource.

CoAP also supports other payload encoding standards such as the

widely used Extensible Markup Language (XML). However, the

verbosity and parsing complexity of XML makes this language

not appropriate for constrained devices. Although the compact

data representation in JSON is more suitable for WSNs, JSON

does not have the flexibility of XML. As a consequence, there has

been significant effort to develop binary XML based

representations such as the Extensible XML Interchange (EXI)

[6].

Table 1 illustrates the results of the comparison between CoAP

and HTTP in terms of byte transferred per transaction, power

consumption and battery lifetime.

The power consumption has been calculated by means of

Energest, a tool able to estimate the power consumption of Tmote

Sky motes [15]. The results have been taken in steady state

conditions.

Table 1. Comparison between CoAP and HTTP

Bytes per-

transaction

Power Lifetime

CoAP 154 0.744 mW 151 days

HTTP 1451 1.333 mW 84 days

As illustrated in Table 1, an HTTP transaction has a number of

bytes 10 times larger than the CoAP transaction. This is a

consequence of the significant header compression executed in

CoAP. In fact, as discussed in Section 2, CoAP uses a short fixed-

length compact binary header of 4 bytes and a typical request has

a total header of about 10-20 bytes. After being encapsulated in

the UDP, 6LoWPAN and MAC layer headers, the CoAP packet

can be transfer into a single MAC frame which has a size of 127

bytes.

It is straightforward that the higher number of bytes transferred in

an HTTP transaction implies a more intensive activity of the

mote’s transceiver and CPU and consequently higher power

consumption (1.33 mW in HTTP against 0.74 mW in CoAP). In

both experiments, the server mote was powered with 2 AA Zinc-

carbon. The figures of the power consumption lead to an

estimation of the battery lifetime of 84 days in HTTP and 151 in

CoAP. Note that the battery lifetime in both cases is

unrealistically short as a consequence of the high number of client

requests generated during the experiment.

It is worth underlining that the results presented in this paragraph

do not exhaustively compare the two protocols. The simple

experiment presented is only intended to illustrate how the UDP

binding and the header compression introduced in CoAP improve

the power consumption of WSNs.

4. Integration of a CoAP based WSN with

a Web application
The use of an IP based communication and a REST based Web

architecture in LLNs facilitates the integration of WSNs with

Internet based Web applications. This Section describes the

design and development of an end-to-end IP based architecture

integrating a CoAP over 6LowPAN Contiki based WSN with an

HTTP over IP based application. The aim of the application is to

allow a user to access WSN data directly from a Web browser, as

illustrated in Figure 2.

Figure 2. Integration between WSNs and the Web

The system has been designed for experimental greenhouse

monitoring. However, it is work in progress and it has not yet

been deployed. The aim of this Section is to illustrate the building

blocks and functionalities of the first basic prototype. A key

component of the system is the gateway described in paragraph

4.1.

4.1 Gateway design and development
When the sensor’s resources are exposed by the device itself with

an application protocol like CoAP, the gateway’s complexity is

significantly reduced with compared to the case in which the

sensor’s resources are exposed by an application gateway. In fact,

an application gateway needs to have full knowledge of the

functionalities of each connected device. This reduces the

architecture flexibility and hampers the system scalability. This is

one of the major problems of non IP based WSN communication

standards such as ZigBee. ZigBee does not have a standard IP

networking layer which implies that a standard web service

architecture cannot be implemented on top of ZigBee. Besides

hampering the interoperability, the lack of a web service

architecture requires the use of application gateways when

interconnecting ZigBee WSNs to the Internet.

In this work, the gateway integrating the CoAP based WSN with

the HTTP based Web application consists of a Linux Ubuntu

machine with a Contiki-gateway attached via USB port. The main

building blocks of the software running on the gateway are

illustrated in Figure 3.

Figure 3. Gateway's main building blocks

As illustrated in Figure 3, the main gateway’s building blocks are

the web server, the database and the CoAP client. For simplicity,

the first gateway prototype includes all the building blocks in the

same box. In a second phase the application will be deployed on

an application server. Therefore the application logic and the data

collection functionality will reside into two different machines.

This clearly reduces the complexity of the gateway and improves

the system scalability.

The web server includes a set of services which are used to

retrieve data either from the database or directly from the CoAP

client. When the Web server sends the Web client historical data

already available in the database, the web server directly accesses

the database without communicating with the CoAP client and

sends the data back to the Web client. When the Web Server

needs to send fresh data coming from the WSN (upon client

request or upon changes of the WSN resources), the web server

bypasses the database and directly communicates with the CoAP

client. Since the Web application has been developed with Google

Web Toolkit (GWT), the web server at the moment is the built-in

GWT’s server called Jetty. When the application will be deployed

on an application server a different web server will be chosen.

The database stores data coming from the CoAP client and makes

them available to the web server. The database chosen is Apache

CouchDB5. Apache CaouchDB is a document-oriented database

which can be queried and indexed with MapReduce technique

using JavaScript. It stores JSON documents and provides a

RESTful API. Since the CoAP client receives WSN data already

in JSON documents, the storage operation is rather simple and

does not require any intermediate data manipulation. However,

the system has not yet been tested under high frequency

measurement conditions and therefore the database scalability has

not yet been evaluated. If a high number of stored documents

results in slow database access, an extra data processing layer

might be needed in order to reduce the data accesse latency.

The libcoap CoAP client module is responsible for

communicating with the WSN. In the current prototype the

gateway-WSN data exchanges are always initiated by the CoAP

client. This is a consequence of the fact that Contiki does not yet

support observations. We are currently adding this functionality

so that the WSN can spontaneously send the CoAP client data

upon resource status change. Once retrieved the JSON data from

the WSN, the CoAP client add a time stamp and stores them into

the database. The time stamp is needed when providing the web

server with historical data.

For simplicity, the current gateway implementation does not

include proxy functionality between HTTP and CoAP. Therefore

there is not translation between the HTTP request and the CoAP

request and vice versa. Upon receiving the HTTP request, the web

server invokes the CoAP client with the parameters included in

the HTTP requests (IPv6 address and port of the mote and the

resource of interest). This implies that the gateway is not

completely transparent to the application and to the WSN. A

proxy module able to do the HTTP-CoAP translation and vice

versa needs to be implemented in order to increase the

transparency of the gateway. This will also facilitate the gateway

in handling more complicated operations such as observations. In

this case for example, a mechanism that translates an HTTP

subscription (e.g. long-polling) needs to be translated in a CoAP

observation relationship. There is at the moment an ongoing

discussion in the CoRE group to decide on issues related to

HTTP-CoAP mapping [16].

5 http://couchdb.apache.org/

5. Conclusions
This paper discussed the integration of WSNs with the Web. This

is being facilitated by the development of CoAP, an IETF

protocol providing LLNs with a RESTful architecture. CoAP

offers the same methods for the resource manipulation as HTTP.

In addition, CoAP supports additional functionalities typical of

IoT and M2M applications, such as multicast, asynchronous

communication and subscriptions. Unlike HTTP, CoAP is built

on top of UDP and has a compact packet overhead. The paper

illustrated how the introduction of UDP and the packet overhead

compression drastically reduce the mote’s power consumption

and consequently increase the battery lifetime. The paper also

described the design and development of an end-to-end IP based

architecture integrating a CoAP over 6LowPAN Contiki based

WSN with an HTTP over IP based application. The application

allows a user to access WSN data directly from a Web browser.

The paper described the main building blocks of the gateway

connecting the Web client with the WSN. The gateway is still in

prototype phase and it requires the development of proxy and

observation functionalities. The database performance needs to be

tested for scalability purpose. The application will be deployed

and tested in a greenhouse monitoring testbed.

6. ACKNOWLEDGMENTS
This work has been done in the scope of the ITEA project

Interoperable Sensor Networks (ISN) in collaboration with the

company Freemind6. The authors acknowledge IWOIB for their

financial support.

7. REFERENCES
[1] Dawson-Haggerty, S., et al. sMAP – a Simple Measurement

and Actuation Profile for Physical Information. In

Proceedings of 8th ACM Conference on Embedded

Networked Sensor Systems (SenSys), 2010.

[2] Kovatsch, M., et al. Embedding Internet Technology for

Home Automation. In Proceedings of IEEE Conference on

Emerging Technologies and Factory Automation (ETFA),

2010.

[3] Mayer, S., et al. Facilitating the Integration and Interaction

of Real-World Services for the Web of Things. In

Proceedings of Urban Internet of Things – Towards

Programmable Real-time Cities (UrbanIOT), 2010.

[4] Guinard, D., et al. A Resource Oriented Architecture for the

Web of Things. In Proceedings of Internet of Things 2010

International Conference (IoT), 2010.

[5] Castellani, A. P., et al. Architecture and Protocols for the

Internet of Things: A Case Study. In Proceedings of First

International Workshop on the Web of Things (WoT), 2010.

[6] Shelby, Z. Embedded Web Services. IEEE Wireless

Communications, pp. 52-57, December 2010.

[7] Atzori, L., et al. The Internet of Things: A survey. Computer

Networks, pp. 2787-2805, October 2010.

[8] Kushalnagar, N, IPv6 over Low-Power Wireless Personal

Area Networks (6LoWPANs): Overview, Assumptions,

Problem Statement, and Goals. RFC 4919.

6 http://www.freemind-group.com/fmc2/

[9] Vasseur, J. P., and Dunkels, A., Interconnecting Smart

Objects with IP: The Next Internet. Morgan Kaufmann,

2010.

[10] Shelby, Z., and Bormann, C., 6LoWPAN: The Wireless

Embedded Internet, Wiley, 2009.

[11] Trifa, V., et al. Design and Implementation of a Gateway for

Web-based Interaction and Management of Embedded

Devices. In Proceedings of the 2nd International Workshop

on Sensor Network Engineering (IWSNE), 2009.

[12] Shelby, Z., et al. Constrained Application Protocol (CoAP).

Internet-Draft. draft-ietf-core-coap-04.

[13] Hartke, K., et al. Observing Resources in CoAP. Internet-

Draft. draft-ietf-core-observe-01.

[14] Eggert, L., Congestion Control for the Constrained

Application Protocol (CoAP). Internet-Draft. draft-eggert-

core-congestion-control-01.

[15] Dunkels, A., et al. Demo abstract: Software-based sensor

node energy estimation. In Proceedings of the Fifth ACM

Conference on Networked Embedded Sensor Systems

(SenSys), 2007.

[16] Castellani, A., et al. Best Practice to map HTTP to COAP

and viceversa. Internet-Draft. draft-castellani-core-http-coap-

mapping-00.txt.

