The course is structured as a research seminar where students present research papers to their peers.

Students are required to read all papers assigned during the semester and be able to competently discuss the material in class. Each student will be responsible for presenting one lecture (depending on the class size) -- that lecture will be based on the assigned paper for the week including as much relevant related work as necessary to distill the work presented in the paper. The speaker should try to present a comprehensive view of the topic suitable for a 45 minute talk. The presenter is also responsible for leading the general discussion for the remainder of the class (30 min).

Additionally, each student is responsible for submitting a summary of the paper, which includes (1) at least two thought-provoking questions on the assigned paper (2) a discussion of any strengths and weaknesses (3) two possible directions for extensions on the ideas / topic presented in the paper. Your questions should critically evaluate the paper (e.g., questioning the assumptions, questioning whether the experiments are lacking (and why), flaws in the analysis, etc). This summary will be turned in to the instructor.

There is a midterm but no final for this course. There will be a semester long project and a number of homeworks that will include implementation on mote devices and simulations. Each student is required to give at least one in-class presentation. The presentation will be centered on pre-selected papers.

<table>
<thead>
<tr>
<th>Percentage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeworks</td>
<td>25</td>
</tr>
<tr>
<td>Midterm</td>
<td>25</td>
</tr>
<tr>
<td>Class Presentations</td>
<td>10</td>
</tr>
<tr>
<td>Class Participation and Summaries</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>30</td>
</tr>
</tbody>
</table>